Question 1
This Homework Help Question: "Question 1 1. [5 pts] Give a complete definition of lim f(x) = -oo if... 2...." No answers yet.
We need 10 more requests to produce the answer to this homework help question. Share with your friends to get the answer faster!
0 /10 have requested the answer to this homework help question.
Question 1 1. [5 pts] Give a complete definition of lim f(x) = -oo if... 2....
2. If S:= {1/n - 1/min, me N}, find inf S and sup S. 4. Let S be a nonempty bounded set in R. (a) Let a > 0, and let aS := {as : S ES). Prove that inf(as) = a infs, sup(as) = a sup S. (b) Let b <0 and let b = {bs : S € S}. Prove that inf(bs) = b supS, sup(bs) = b inf S. 6. Let X be a nonempty set and...
(5) Let f: [0, 1 R. We say that f is Hölder continuous of order a e (0,1) if \f(x) -- f(y)| . , y sup [0, 1] with 2 # 1£l\c° sup is finite. We define Co ((0, 1]) f: [0, 1] -R: f is Hölder continuous of order a}. = (a) For f,gE C ([0, 1]) define da(f,g) = ||f-9||c«. Prove that da is a well-defined metric Ca((0, 1) (b) Prove that (C ([0, 1]), da) is complete...
5a) (5 pts) Find lim inf (xn) and lim sup (rn), for rn = 4 + (-1)" (1 - 2). Justify your answer 5b) (5 pts) Find a sequence r, with lim sup (xn) = 3 and lim inf (x,) = -2. 5c) (10 pts) Let {x,} be a bounded sequence of real numbers with lim inf (x,) = x and lim sup (x,) = y where , yER. Show that {xn} has subsequences {an} and {bn}, such that an...
5- Recall that a set KCR is said to be compact if every open cover for K has a finite subcover 5-1) Use the above definition to prove that if A and B are two compact subsets of R then AUB is compact induction to show that a finite union of compact subsets of R is compact. 5-2) Now use 5-3) Let A be a nonempty finite subset of R. Prove that A is compact 5-4) Give an example of...
PLEASE ANSWER ALL! SHOWS STEPS 2. (a) Prove by using the definition of convergence only, without using limit theo- (b) Prove by using the definition of continuity, or by using the є_ó property, that 3. Let f be a twice differentiable function defined on the closed interval [0, 1]. Suppose rems, that if (S) is a sequence converging to s, then lim, 10 2 f (x) is a continuous function on R r,s,t e [0,1] are defined so that r...
4. (20 pts) Let {xn} be a Cauchy sequence. Show that a) (5 pts) {xn} is bounded. Hint: See Lecture 4 notes b) (5 pts) {Jxn} is a Cauchy sequence. Hint: Use the following inequality ||x| - |y|| < |x - y|, for all x, y E R. _ subsequence of {xn} and xn c) (5 pts) If {xnk} is a See Lecture 4 notes. as k - oo, then xn OO as n»oo. Hint: > d) (5 pts) If...
For Topology!!! Match the terms and phrases below with their definitions. X and Y represents topological spaces. Note: there are more terms than definitions! Terms: compact, connected, Hausdorff, homeomorphis, quotient topology, discrete topology, indiscrete topology, open set continuous, closed set, open set, topological property, separation, open cover, finite refinement, B(1,8) 20. A collection of open subsets of X whose union equals X 20. 21. The complement of an open set 21. 22. Distinct points r and y can be separated...
B2. (a) Let I denote the interval 0,1 and let C denote the space of continuous functions I-R. Define dsup(f,g)-sup |f(t)-g(t) and di(f.g)f (t)- g(t)ldt (f,g E C) tEI (i) Prove that dsup is a metric on C (ii) Prove that di is a metric on C. (You may use any standard properties of continuous functions and integrals, provided you make your reasoning clear.) 6 i) Let 1 denote the constant function on I with value 1. Give an explicit...
Write ‘T' for true or ‘F' for false. You do not need to show any work or justify your answers for this question. The questions are 2 points each. (a) __If (xn) is a convergent sequence (converging to a finite limit) and f:RR is a continuous function, then (f (xn)) is a convergent sequence. (b) _If (xn) is a Cauchy sequence with Yn € (0,1) and f :(0,1) + R is contin- uous, then (f(xn)) is also a Cauchy sequence....
Part 2: Metrics and Norms 1. Norms and convergence: (a) Prove the l2 metric defined in class is a valid norm on R2 (b) Prove that in R2, any open ball in 12 ("Euclidean metric") can be enclosed in an open ball in the loo norm ("sup" norm). (c). Say I have a collection of functions f:I R. Say I (1,2). Consider the convergence of a sequence of functions fn (z) → f(x) in 12-Show that the convergence amounts to...