1) A diffraction grating is w-3 cm wide and has N-1.2 x 104 slits. A monochromatic...
1) A diffraction grating is w-3 cm wide and has N-1.2 x 104 slits. A monochromatic light source of wavelength λ-680 nm shines through the grating onto a screen. At what angle does the first-order line appear on the screen? 8-1 5.22 deg 8-1 5.78 deg θ-105.32 deg θ-59.54 deg 0 143.24 deg Submit 2) Another source of light is present and is just barely resolved from the 680 nm source in the second order. What is the difference in...
1. Monochromatic blue light of wavelength 440-nm passes through a 3300 lines/cm diffraction grating and the interference pattern is observed on a screen. (a) Determine the interference angle for the 2nd order bright fringe. (5 points) (b) If a screen is 0.75-m away, how far (in cm) is the 2nd order bright fringe from the center? Show all steps. [3 points) (c) Sketch the path taken by this light to reach the center, the 1st and 2nd order bright fringes....
1. Monochromatic blue light of wavelength 440-nm passes through a 3300 lines/cm diffraction grating and the interference pattern is observed on a screen. (a) Determine the interference angle for the 2nd order bright fringe. 15 points) (b) If a screen is 0.75-m away, how far (in cm) is the 2nd order bright fringe from the center? Show all steps. [3 points) (c) Sketch the path taken by this light to reach the center, the 1st and 2nd order bright fringes....
2. You have a diffraction grating with 2500 lines/cm. You also have a light source that emits light at 2 different wavelengths, 540 nm and 690 nm, at the same time. The screen for your experiment is 1.2 meters from the diffraction grating. A. What is the line spacing for the grating? B. What is the difference in the angle of the 2nd bright fringe for each wavelength for this grating? C. Which wavelength is closer to the center of...
Review Part A A diffraction grating has 2600 lines/cm What is the angle between the first-order maxima for red light (λ-680 nm) and blue light(λ: 410 nm)? Express your answer to two significant figures. ΑΣφ Next Item 四! red blue Submit Request Answer
Monochromatic light shines on a diffraction grating with 8,600 lines uniformly distributed over 1.8 cm. The grating is illuminated using a laser of 630 nm wavelength. A diffraction pattern is formed on a screen located at 1.7 m away from the grating. (a) What is the angle of the first-order maximum of the 630-nm light incident upon the grating? (b) What is the separation on the screen between the first and the second order maxima? (c) What is the highest...
A 4.4-cm-wide diffraction grating has 2400 slits. It is illuminated by light of wavelength 530 nm . What is the angle (in degrees) of the first diffraction order? What is the angle (in degrees) of the second diffraction order?
3. 650 nm yellow light is incident on a diffraction grating which has 150 lines/cm. What is the spacing between the bright fringes produced as a result on a screen 4.9 m away? (4.8 cm)
A diffraction grating 2.5 cm wide produces a deviation of 42◦ in the second order peak with light of 550 nm wavelength. (a) What is the total number of lines on the grating? (b) If a screen is located at 1.8 m from the grating, where is the position of the first order maximum for that same wavelength? (c) For which wavelength the third order maximum overlaps with the second order maximum of 550 nm wavelength?
QUESTION 7 Light of 430 nm passing through a diffraction grating with a separation, d=1.5 x 10-6 m creates an interference pattern on a screen 2.3 m away. What is the maximum number of bright fringes possible to see on the screen? A. Three OB. Seven C. Four O D. Six O E. Five QUESTIONS Light passing through a diffraction grating with a separation, d = 1.8 x 10m creates an interference pattern on a screen 1.2 m away. If...