Question

[1 -1 0 0 -2 0] 1 4 -4 0 0 -8 0 (1 point) Let...

[1 -1 0 0 -2 0] 1 4 -4 0 0 -8 0 (1 point) Let A = 10 0 -1 2 -3 3 . Find a basis for the row space of A, a basis for the colum

[1 -1 0 0 -2 0] 1 4 -4 0 0 -8 0 (1 point) Let A = 10 0 -1 2 -3 3 . Find a basis for the row space of A, a basis for the column space of A, a basis for the null space 0 0 0 -3 0 -2 Lo 0 1 0 3 3] [1 -1 0 0 -2 01 0 0 1 0 3 0 of A, the rank of A, and the nullity of A. (Note that the reduced row echelon form of A is 0 0 0 1 0 0 .) 0 0 0 0 0 1 Lo 0 0 0 0 0 Row Space basis: Column Space basis: Null Space basis: Rank: Nullity: To enter a basis into WebWork, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is | 2,1l}, then you would enter [1,2,3],[1,1,1) into the answer blank. 311
0 0
Add a comment Improve this question
Answer #1

Sign Up to Unlock the answer FREE

Already have an account? Log in

ه - 0 0 -2 0 4 -4 o os o o o -1 2-3 3 لم o o lo 33 o Reduced o-2 o vow of A is l echelen form . - . Co Rowspace non zero rousColumnsface from reduced rowechelon form it has a pivots 6th Columns are first, 3rd, uth and pivet columns. are clumns of H b

Add a comment
Know the answer?
Add Answer to:
[1 -1 0 0 -2 0] 1 4 -4 0 0 -8 0 (1 point) Let...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • T0 0 0 ] (1 point) The matrix A = -5 5 10 has two real...

    T0 0 0 ] (1 point) The matrix A = -5 5 10 has two real eigenvalues, one of multiplicity 1 and one of multiplicity 2. Find the eigenvalues and a basis of [ 5 -5 -10] each eigenspace. 11 = has multiplicity 1, with a basis of 22 = !! has multiplicity 2, with a basis of 010 To enter a basis into WebWork, place the entries of each vector inside of brackets, and enter a list of these...

  • (1 point) Let L be the linear operator in R? defined by L(x) = (4x1 –...

    (1 point) Let L be the linear operator in R? defined by L(x) = (4x1 – 2x2, -6x1 + 3x2) Find bases of the kernel and image of L. 00 Kernel: * Image: [-2,3] To enter a basis into WebWork, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is 1 2,1l/, then you would enter [1,2,3], 31 [1,1,1) into the answer blank.

  • (1 point) Let A = 2 2 | -4 1-2 6 -3 -3 3 3 -3...

    (1 point) Let A = 2 2 | -4 1-2 6 -3 -3 3 3 -3 0 3 4 7 1 -5 -1 Find a basis of nullspace(A). Answer: [1,0,3/2,0], [0,-3/9,0,1] To enter a basis into WeBWork, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is 12, 1 }, then you would enter [1,2,3],[1,1,1) into the answer blank. U 3 ||1

  • (1 point) Find an orthonormal basis of the plane X1 + 4x2 – x3 = 0....

    (1 point) Find an orthonormal basis of the plane X1 + 4x2 – x3 = 0. Answer: To enter a basis into WebWork, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is 2 then you would enter [1,2,3], 3 [1,1,1) into the answer blank.

  • (1 point) Let A-0 -2 3 Find a basis of nullspace(A). Answer: To enter a basis...

    (1 point) Let A-0 -2 3 Find a basis of nullspace(A). Answer: To enter a basis into WeBWorK, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is 21 , then you would enter [1,2,3],11,1,1] into the answer blank.

  • please give the correct answer with explanations, thank you Als a 3 x 4 matrix with...

    please give the correct answer with explanations, thank you Als a 3 x 4 matrix with column vectors a, a, a3, 24 50 A (a a2 a3 24 If you need to refer to these column vectors in any answer use a1 a2 etc for 1, 2 etc.) A has row reduced echelon form (RREF) 1042 0 1 2 0 0 0 0 1. State the values of rank(A) Number and nullity(A) Number 2. Find a basis for the column...

  • Given the matrix A and its reduced row echelon form R, answer the following questions. 4...

    Given the matrix A and its reduced row echelon form R, answer the following questions. 4 A 1 0 3 0 3 3 1 1406 1 1 4 1 8 2 1 7 2 13 9 R= 1 0 3 0 3 3 0110 31 000121 1000000 5 Find a basis for the column space of A and the row space of A. Ao Basis for column space of A: with a comma-separated list of vectors enclosed with braces {}....

  • Given the matrix A and its reduced row echelon form R, answer the following questions. A=...

    Given the matrix A and its reduced row echelon form R, answer the following questions. A= 10 20 3 4 1 1 60 7 6 11 6 1 10 10 2 1 8 2 16 18 R= 1 0 2 0 3 4 0 14 0 4 2 000134 000000 Find a basis for the column space of A and the row space of A. Basis for column space of A: with a comma-separated list of vectors enclosed with braces...

  • Section 3.4 Basis and Dimension: Problem 4 Previous Problem Problem List Next Problem (1 point) Find...

    Section 3.4 Basis and Dimension: Problem 4 Previous Problem Problem List Next Problem (1 point) Find a basis of the subspace of R* defined by the equation - 2:04 +32 +673 +624 = 0 Answer To enter a basis into WebWork, place the entries of each vector inside of brackets and enter a list of these vectors, separated by instance, if your basis is 2 . 1 , then you would enter [1,2,3],[1,1,1) into the answer blank.

  • Given the matrix A and its reduced row echelon form R, answer the following questions. A=...

    Given the matrix A and its reduced row echelon form R, answer the following questions. A= 1 02 03 4 1 1 6 0 7 6 1 1 6 1 10 10 2 1 8 2 16 18 R= (10 20 3 4 01 4 0 4 2 000134 000000 Find a basis for the column space of A and the row space of A. Use vector notation <21,22,..., Im >. Express your basis Basis for column space of A:...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
Active Questions
ADVERTISEMENT