(2 points) The area \(A\) of the region \(S\) that lies under the graph of the continuous function \(f\) on the interval \([a, b]\) is the limit of the sum of the areas of approximating rectangles:
$$ A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x $$
where \(\Delta x=\frac{b-a}{n}\) and \(x_{i}=a+i \Delta x\).
The expression
$$ A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{8 n} \tan \left(\frac{i \pi}{8 n}\right) $$
gives the area of the function \(f(x)=\) on the interval
(2 points) The area A of the region S that lies under the graph of the...
find an expression for the area of the region under the graph f(x)=x^4 on the interval [1,7]. use right-Hand endpoints as sample points choices1. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{7 i}{n}\right)^{4} \frac{7}{n}\)2. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{9 i}{n}\right)^{4} \frac{6}{n}\)3. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{6 i}{n}\right)^{4} \frac{6}{n}\)4. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{7 i}{n}\right)^{4} \frac{6}{n}\)5. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{6 i}{n}\right)^{4} \frac{7}{n}\)6. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{9 i}{n}\right)^{4} \frac{7}{n}\)
(1 point) Definition: The AREA A of the region that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles A = lim R, = lim [f(x)Ar + f(x2)Ax+... +f(x,y)Ax] 100 Wspacelin (a) Use the above definition to determine which of the following expressions represents the area under the graph of f(x) = x3 from x = 0 to x = 2. 64 A. lim 7100 11 i= B....
-/2 POINTS SESSCALCET2 5.1.503.XP. The area A of the region that lies under the graph of the continuous function is the limit of the sum of the areas of approximating rectangles. lim Rn limf ax + 2)Ax + ... + X)x] Use this definition to find an expression for the area under the graph off as a limit. Do not evaluate the limit. FX) - VX,15* $ 12 A lim Need Help? Talk to Tutor
The area A of the region S that les under the graph of the continuous fun the areas of approximating rectangles sthis deinition to find an expression for the area under the graph of f as a The area A of the region S that lies under the graph of the continuous function is the limit of the sum of the areas of approximating rectangles Use this definition to find an expression for the area under the graph of f...
ssignment6: Problem 9 Previous Problem Problem List Next Problem (1 point) The area A of the region Sthat lies under the graph of the continuous function f on the interval (a, b) is the limit of the sum of the areas of approximating rectangles: A = lim (f(21)Ar + f(x2)Ax+...+f(xn)Ax] = lim f(x;)Az, n-> ng i=1 where Ax = b and Ti = a +iAr. The expression A = lim Itan(n) 7200 6n2 gives the area of the function f(x)...
Frequency-domain sampling. Consider the following discrete-time signal$$ x(n)= \begin{cases}a^{|n|}, & |n| \leq L \\ 0, & |n|>L\end{cases} $$where \(a=0.95\) and \(L=10\).(a) Compute and plot the signal \(x(n)\).(b) Show that$$ X(\omega)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}=x(0)+2 \sum_{n-1}^{L} x(n) \cos \omega n $$Plot \(X(\omega)\) by computing it at \(\omega=\pi k / 100, k=0,1, \ldots, 100\).(c) Compute$$ c_{k}=\frac{1}{N} X\left(\frac{2 \pi}{N} K\right), \quad k=0,1, \ldots, N-1 $$for \(N=30\).(d) Determine and plot the signal$$ \tilde{x}(n)=\sum_{k=0}^{N-1} c k e^{j(2 \pi / N) k n} $$What is the...
Consider a discrete time signal \(y[n]=\frac{\sin (\pi n / 5)}{\pi n}+\cos (\pi n / 10) .\) Let's build the continuous time representation of \(y[n]\) using \(T_{s}=1 / 10\) as follows:$$ y_{\delta}(t)=\sum_{n=-\infty}^{\infty} y[n] \delta\left(t-n T_{s}\right)=\sum_{n=-\infty}^{\infty} y[n] \delta(t-n / 10) $$Choose the right expression for \(Y_{\delta}(j \omega)\).(Hint: You can first sketch \(Y\left(e^{j \Omega}\right)\). Then, you can obtain the sketch of \(Y_{\delta}(j \omega)\) from \(Y\left(e^{j \Omega}\right)\). Note that in the earlier lecture on sampling, we derived that \(Y_{\delta}(j \omega)=\left.Y\left(e^{j \Omega}\right)\right|_{\Omega=\omega T_{x}}=Y\left(e^{j \omega T_{\nu}}\right)\).In...
send help for these 4 questions, please show steps Definition: The AREA A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles A = lim R, = lim [f(x)Ax +f(x2)Ax+...+f(x)Ax] - 00 Consider the function f(x) = x, 13x < 16. Using the above definition, determine which of the following expressions represents the area under the graph off as a limit. A. lim...
Suppose that \(\left(\xi_{j}\right)^{\infty}=1\) is a sequence of independent identically distributed \((i . i . d .)\) continuous random variables.- Suppose that each \(\xi_{i}\) has a probability density function \(p_{i}(x)=\left\{\begin{array}{c}\frac{\beta}{x^{x}}, x \geq 1 \\ 0, x<1\end{array}\right.\), where \(\alpha, \beta \in\)R.- Let \(S_{n}=\sum_{i=1}^{n} \xi_{i}\).- Let \(S_{n}=\frac{s_{n}-\operatorname{mE}\left(\xi_{0}\right)}{\sqrt{n} \operatorname{Var}(\mathcal{B})}\).a. Find a condition on \(\alpha\) and a condition on \(\beta\) (as a function of \(\alpha\) ) which together make \(f_{1}(x)\) a probability density function.b. Find conditions on \(\alpha\) which guarantee that \(\lim _{n \rightarrow \infty}...
5. If \(f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ x & 0<x<2\end{array} \quad\right.\)is periodio of period 4 , and whose Fourier series is given by \(\frac{a_{0}}{2}+\sum_{n=1}^{2}\left[a_{n} \cos \left(\frac{n \pi}{2} x\right)+b_{n} \sin \left(\frac{n \pi}{2} x\right)\right], \quad\) find \(a_{n}\)A. \(\frac{2}{n^{2} \pi^{2}}\)B. \(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\)C. \(\frac{4}{n^{2} \pi^{2}}\)D. \(\frac{2}{n \pi}\)\(\mathbf{E}_{1} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}}\)F. \(\frac{4}{n \pi}\)6. Let \(f(x)-2 x-l\) on \([0,2]\). The Fourier sine series for \(f(x)\) is \(\sum_{w}^{n} b_{n} \sin \left(\frac{n \pi}{2} x\right)\), What is \(b, ?\)A. \(\frac{4}{3 \pi}\)B. \(\frac{2}{\pi}\)C. \(\frac{4}{\pi}\)D. \(\frac{-4}{3 \pi}\)E. \(\frac{-2}{\pi}\)F. \(\frac{-4}{\pi}\)7. Let \(f(x)\) be periodic...