Homework Help Question & Answers

Problem 3 Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are...


Problem 3 Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 400 C, and 80 m/s, and the exit conditions are 10 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. Determine (a) the change in kinetic energy, (b) the power output, and (c) the turbine inlet area. Pi = 10 MPa 7, = 400 °C V1 80 m/s No STEAM 3 12 kg/s ▼Sh Wout No S Ret P-10 kPa x,-0.92 la= 50 m/s Opacity 297 words
Problem 3 Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 400 C, and 80 m/s, and the exit conditions are 10 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. Determine (a) the change in kinetic energy, (b) the power output, and (c) the turbine inlet area. Pi = 10 MPa 7, = 400 °C V1 80 m/s No STEAM 3 12 kg/s ▼Sh Wout No S Ret P-10 kPa x,-0.92 la= 50 m/s Opacity 297 words
0 0
Add a comment
Know the answer?
Add Answer to:
Problem 3 Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coin

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Steam flows steadily through an adiabatic turbine

    Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500°C, and 80 m/s, and the exit conditions are 30 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. Determine a. (3) Change in kinetic energy (-23.4 kJ) b. (4) Power output (12.12 MW) c. (3) Turbine inlet area (0.012966 m2)

  • An adiabatic turbine uses steam as the medium and it operates steadily at pressure of 6...

    An adiabatic turbine uses steam as the medium and it operates steadily at pressure of 6 Mpa, temperature of 600 oC and velocity inlet of 53 m/ The steam expands in the turbine and exits at pressure of 10 kPa and velocity of 82 m/s. During the process, the power produced by the turbine is 5.4 Mw and the isentropic efficiency is 50 % Format: 80.5 Format:73498 Format:4.8577 Format 0.88 Format: 7547.8 Format : 9.5 Format: 34366 Format : 6588...

  • 3. Question 3: Entropy change in a diabatic steam turbine (20) Steam enters a reversible, adiabatic...

    3. Question 3: Entropy change in a diabatic steam turbine (20) Steam enters a reversible, adiabatic turbine at 4 MPa and 520°C with a velocity of 60 m/s. The steam exhausts from the turbine at a pressure of 80 kPa with a velocity of 140 m/s. Determine the work output of the turbine per unit mass of steam flowing through the turbine. Steam Pi = 4 MPa Ti = 520°C Vi = 60 m/s Reversible, adiabatic turbine w System boundary...

  • 4-1-30 [WX] An adiabatic steam nozzle operates steadily under the following conditions. Inlet: superheated vapor, p1...

    4-1-30 [WX] An adiabatic steam nozzle operates steadily under the following conditions. Inlet: superheated vapor, p1 = 1 MPa, T1 = 300°C, A1 78.54 cm2; Exit: saturated vapor, p2 = 100 kPa. Determine (a) the exit velocity (V2) in m/s, (b) the rate of entropy Solution] [Discuss] generation (Šgen) in kW/K. The mass flow rate (m is 1 kg/s.

  • Problem 2 Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s,...

    Problem 2 Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s, and leaves at 100 kPa and 75 m/s. If the power output of the turbine is 5 MW and the isentropic efficiency is 77 percent, determine: A. the mass flow rate of steam through the turbine, B. the temperature at the turbine exit, and C. the rate of entropy generation during this process.

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • c) Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at...

    c) Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s, and leaves at 150 kPa and 350 m/s. The isentropic efficiency of the turbine is 85%. Neglect potential energy. (i) (ii) (iii) Determine the exit temperature of the steam, and its quality (if saturated mixture) Calculate the actual power output of the turbine, in kW Illustrate a T-s diagram with respect to saturation lines for the isentropic process...

  • c) Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at...

    c) Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s, and leaves at 150 kPa and 350 m/s. The isentropic efficiency of the turbine is 85%. Neglect potential energy. (i) (ii) (iii) Determine the exit temperature of the steam, and its quality (if saturated mixture) Calculate the actual power output of the turbine, in kW Illustrate a T-s diagram with respect to saturation lines for the isentropic process...

  • its the power output in KW In a power plant, steam enters a turbine steadily at...

    its the power output in KW In a power plant, steam enters a turbine steadily at 10 MPa and 600°C with a velocity 65 m/s and leaves at 125 kPa with a 96 percent quality. A heat loss of 22 kJ/kg occurs during the process. The inlet area of the turbine is 140 cm². Determine (a) the mass flow rate of the steam and (b) the power output.

  • thermodynamics Thermodynamics P5.31: - Steam at 3 MPa and 400°C enters an adiabatic nozle steadily with...

    thermodynamics Thermodynamics P5.31: - Steam at 3 MPa and 400°C enters an adiabatic nozle steadily with a velocity of 40 m/s and leaves at 2.5 MPa and 300 m/s. Determine (a) the exit temperature (b) the ratio of the inlet to exit area A1/A2. P5.64:- Refrigerant-134a at 800 kPa and 25°C is throttled to a temperature of 220°C. Determine the pressure and the internal energy of the refrigerant at the final state P1-0.8 MPa

Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.