Homework Help Question & Answers

5. A cylindrical specimen of aluminum having a diameter of 12.8 mm and a gauge length...

5. A cylindrical specimen of aluminum having a diameter of 12.8 mm and a gauge length of 50.800 mm is pulled in tension. Use the load-elongation characteristics tabulated below to complete parts (a) through (f). Use SI unit system. Load Length 0 7330 15,100 23,100 30,400 34,400 38,400 41,300 44,800 46,200 47,300 47,500 46,100 44,800 42,600 36,400 lb 0 1650 3,400 5,200 6,850 7,750 8,650 9,300 10,100 10,400 10,650 10,700 10,400 10,100 9,600 mim 50.800 50.851 50.902 50.952 51.003 51.054 51.308 51.816 52.832 53.848 54.864 55.880 56.896 57.658 58.420 59.182 in. 2.000 2.002 2.004 2.006 2.008 2.010 2.020 2.040 2.080 2.120 2.160 2.200 2.240 2.270 2.300 2.330 8,200 Fracture (a) Plot the data as engineering stress versus engineering strain. (b) Compute the modulus of elasticity (c) Determine the yield strength at a strain offset of 0.002. (d) Determine the tensile strength of this alloy (e) What is the approximate ductility, in percent elongation? (f) Compute the modulus of resilience

5. A cylindrical specimen of aluminum having a diameter of 12.8 mm and a gauge length of 50.800 mm is pulled in tension. Use the load-elongation characteristics tabulated below to complete parts (a) through (f). Use SI unit system. Load Length 0 7330 15,100 23,100 30,400 34,400 38,400 41,300 44,800 46,200 47,300 47,500 46,100 44,800 42,600 36,400 lb 0 1650 3,400 5,200 6,850 7,750 8,650 9,300 10,100 10,400 10,650 10,700 10,400 10,100 9,600 mim 50.800 50.851 50.902 50.952 51.003 51.054 51.308 51.816 52.832 53.848 54.864 55.880 56.896 57.658 58.420 59.182 in. 2.000 2.002 2.004 2.006 2.008 2.010 2.020 2.040 2.080 2.120 2.160 2.200 2.240 2.270 2.300 2.330 8,200 Fracture (a) Plot the data as engineering stress versus engineering strain. (b) Compute the modulus of elasticity (c) Determine the yield strength at a strain offset of 0.002. (d) Determine the tensile strength of this alloy (e) What is the approximate ductility, in percent elongation? (f) Compute the modulus of resilience
0 0
Add a comment
Know the answer?
Add Answer to:
5. A cylindrical specimen of aluminum having a diameter of 12.8 mm and a gauge length...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coin

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. (70 pts) A cylindrical specimen of an alloy having a diameter of 12.8 mm and...

    2. (70 pts) A cylindrical specimen of an alloy having a diameter of 12.8 mm and a gauge length of 50.800 mm is pulled in tension. The load-length data are recorded during the test and are tabulated below. After fracture, the diameter of the specimen near the fracture point was 9.5 mm. Load (N) 7,330 15,100 23,100 30,400 34,400 38,400 41,300 44.800 46,200 47,300 47,500 46,100 44,800 42,600 36,400 Length (mm) 50.800 50.851 50.902 50.952 51.003 51.054 51.308 51.816 52.832...

  • (c) Acylindrical specimen of stainless steel having a diameter of 12.8 mm and a gauge length...

    (c) Acylindrical specimen of stainless steel having a diameter of 12.8 mm and a gauge length of 50.800 mm is pulled in tension. The data acquired was used to plot engineering stress versus engineering strain as shown in the following two graphs (please note that fig. b is a blown-up clastic portion of (a)). Use the o-curves to complete parts through (vi) Stress (MP) 0.00 0.02 0.04 0.06 0.08 0.10 Strain Fig (a). - curve of stainless steel Stress (MPa)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT