THEOREM 205. Define the functions fr : [0, 1] + R by Sn(:1) = x" /n...
= 5a. (10 pts) Let fr : [0, 1] → R, fn(x) ce-nzº, for m = = 1, 2, 3, .... Check if the sequence (fn) is uniformly convergent. In the case (fr) is uniformly convergent find its limit. Justify your answer. Hint: First show that the pointwise limit of (fr) is f = 0, i.e., f (x) = 0, for all x € [0, 1]. Then show that 1 \Sn (r) – 5 (w) SS, (cm) - Vžne 1...
4. Suppose (fr)nen is a sequence of functions on [0, 1] such that each fn is differentiable on (0,1) and f(x) < 1 for all x € (0,1) and n e N. (a) If (fn (0))nen converges to a number A, prove that lim sup|fn(x) = 1+|A| for all x € [0, 1]. n-too : (b) Suppose that (fr) converges uniformly on [0, 1] to a function F : [0, 1] + R. Is F necessarily differentiable on (0,1)? If...
For each n E N, define a function fn A - R. Suppose that each function fn is uniformly continuous. Moreover, suppose there is a function f : A R such that for all є 0, there exists a N, and for all x E A, we have lÍs(x)-f(x)|く for all n > N. Then f is uniformly continuous. Note: We could say that the "sequence of functions" f "converges to the function" f. These are not defined terms for...
5. Let fn(x) = x"/n on [0, 1]. Show that (fr)nen converges uniformly to a differentiable function on [0, 1], but (f%) does not converge uniformly neN on [0, 1].
I'm not good at front of advanced math because I'm in the middle of the class. If you show me a rigorously detailed proof, I'd like to ask a additional question probably... 2. For each natural numbern and each number x in [0, 1), define f,(x) nxe Prove that the sequence (f: [0, 1] R} converges pointwise to the constant function 0, but that the sequence of integrals (of,) does not converge to 0. Does this contradict Theorem 9.18? THEOREM...
(h) Define f : [0, 2] + R by 122 if 0 <<<1 f(x) = { ifl<152 Using the limit definition of the derivative and the sequence definition of the limit prove that f'(1) does not exist.
1. (a) Let {fn}neN : [0,00) + R be a sequence of function define by: sin(nx) fn(x) 1+ nx (i) Guess the pointwise limit f of fn on (0,00) and justify your claim. [15 Marks] (ii) Show that fn + f uniformly on ſa, 00), Va > 0. [10 Marks) (iii) Show that fn does not converge uniformly to f on (0,00) [10 Marks] (Hint: Show that ||fr|| 21+(1/2) (b) Prove that a continuous function f defined on a closed...
4. Define the functions fn : 1-1, 1] → R given by TL Prove that fn → Irl uniformly on I-1, 1]. Note that the limit function Irl is a continuous function but not differentiable at r-0.
2. (8 points) Let {fn}n>ı be a sequence of functions that are defined on R by fn(x):= e-nx. Does {{n}n>1 converge uniformly on [0, 1]? Does it converge uniformly on (a, 1) with 0 <a<1? Does it converge uniformly on (0, 1)?
(4) Let(an}n=o be a sequence in C. Define R-i-lim suplanlì/n. Recall that R e [0,x] o0 is the radius of convergence of the power series Σ a (z 20)" Assume that R > 0 (a) Prove that if 0 < ρ < R, then the power series converges uniformly on the closed (b) Prove that the power series converges uniformly on any compact subset of the disk Ix - xo< R (4) Let(an}n=o be a sequence in C. Define R-i-lim...