Please answer fully and clearly. Thank you.
Please answer fully and clearly. Thank you. )if (e-) (0.0)) if (z, y)#10, 0), 2. Consider f R2R defined by f(,) plHP, 0, if (x,y) (0,0)J (a) Show by explicit computation that the directional derivati...
if (r.y) (0,0), 0,f (, y) (0, 0) 2. Consider f : IR2 -R defined by f(r,y)-+ (a) Show by explicit computation that the directional derivative exists at (x, y)- (0,0) for all oi rections u є R2 with 1 11-1, but that its value %(0.0) (Vf(0,0).u), fr at least one sucli u. (b) Show that the partial derivatives of f are not continuous at (0,0) if (r.y) (0,0), 0,f (, y) (0, 0) 2. Consider f : IR2 -R...
Consider the function f: RR given by if (x, y)メ(0,0) íf (z, y) = (0,0). f(z, y)=(0+r R2 does the directional derivative Duf(0,0) exist? Evaluate the For which vectors 0メu directional derivative wherever it exists. 4 marks
Define f: R2R by 224V2 y) (0,0) 0 if (x, y)-(0,0) if (z, f(z, y) (a) Prove that Dif(z, y) and D2f (x, y) exist for each (x, y) E R2. (b) Prove that f is not continuous at (0,0).
2. Consider the function f : R2 → R defined below. r3уг_ if (x,y) (0,0) f(x,y) = if (x, y) (0, 0) (a) Prove that f is continuous at (0,0) (b) Calculate the partial derivatives (0,0) and (0,0) directly from the definition of partial derivatives. (c) Prove that f is not differentiable at (0,0).
Exercice 2 (5pts) Let f given by f(x, y) Isinyif (x, y) (0,0) and f(0,0) 0 1V224 1. Is f continuous at (0,0). 2. Compute the partial derivatives of f at any (x, y) E R2. Are the partial derivatives continuous (0,0). at (0,0) (0,0) and 3. Compute the second derivatives 4. Compute the linear approzimant of f at (0,0). Exercice 2 (5pts) Let f given by f(x, y) Isinyif (x, y) (0,0) and f(0,0) 0 1V224 1. Is f...
Anyone can solve these questions? (4) Let if (z, y)メ(0,0) if (x, y) (0,0) f(z, y) / 0 a) Show that f is a continuous function b) Show that f has partial derivatives at (0,0) and find (0,0) as well as c) Is f differentiable at (0, 0)? d) Are the partial derivatives r tinuous at (0,0)? (0,0) (5) Let A E M(mx n,R) and f : RnRm be the linear map f(x)-Ax. Show that f is a differentiable function...
b) i. Using e-8 definition show that f is continuous at (0,0), where f(x,y) = {aš sin () + yś sin () if xy + 0 242ADES if xy = 0 ii. Prove that every linear transformation T:R" - R" is continuous on R". iii. Let f:R" → R and a ER" Define Dis (a), the i-th partial derivative of f at a, 1 sisn. Determine whether the partial derivatives of f exist at (0,0) for the following function. In...
DUE DATE: 23 MARCH 2020 1 1. Let f(x,y) = (x, y) + (0,0) 0. (x, y) = (0,0) evaluate lim(x,y)=(4,3) [5] 2r + 8y 2. Show that lim does not exist. [10] (*.w)-(2,-1) 2.ry + 2 3. Find the first and second partial derivatives of f(x,y) = tan-'(x + 2y). [16] 4. If z is implicitly defined as a function of x and y by I?+y2 + 2 = 1, show az Əz that +y=z [14] ar ду 5....
(1 point) Consider the function defined by F(x, y) = x2 + y2 except at (r, y) - (0, 0) where F(0,0)0 Then we have (0,0) = (0,0) = ax dy Note that the answers are different. The existence and continuity of all second partials in a region around a point guarantees the equality of the two mixed second derivatives at the point. In the above case, continuity fails at (0,0) Note: You can earn partial credit on this problem...
Question 2 (20 points): Consider the functions f(x, y)-xe y sin y and g(x, y)-ys 1. Show f is differentiable in its domain 2. Compute the partial derivatives of g at (0,0) 3. Show that g is not differentiable at (0,0) 4. You are told that there is a function F : R2 → R with partial derivatives F(x,y) = x2 +4y and Fy(x, y 3x - y. Should you believe it? Explain why. (Hint: use Clairaut's theorem) Question 2...