Before we start note that #2# is the same as #2^1#
#color(blue)("Consider "x^(-4))#
#x^(-4)# is the same as #1/x^4#
As an additional point: #1/x^(-4)# is the same as #x^4#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Consider "(2x^3y^2)^3#
This is the same as #(2x^3y^2)xx(2x^3y^2)xx(2x^3y^2)#
Giving:#" "8x^9y^6#
So as a general case:#" "(x^ay^b)^c = x^(axxc)y^(bxxc)#
So for #(2x^3y^2)^3 = 2^(1xx3)x^(3xx3)y^(2xx3)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #color(blue)("Putting it all together")# #x^-4/(2xy^3(2x^3y^2)^3) = 1/x^4xx 1/(2xy^3(2x^3y^2)^3)=1/x^4xx1/(2xy^3xx8x^9y^6)#