. Prove that sequence in Example 6.2.2 (i) on p.174 converges uniformly to r on any inteval [a, b]. Prove that the...
(2) Let {fJ be a sequence of continuous, real-valued functions that converges uniformly on the interval [0,1 (a) Show that there exists M> 0 such that n(x) M for all r E [0,1] and all n N. (b) Does the result in part (a) hold if uniform convergence is replaced by pointwise convergence? Prove or give a counterexample (2) Let {fJ be a sequence of continuous, real-valued functions that converges uniformly on the interval [0,1 (a) Show that there exists...
(b) Let a >0. Does (f.) converge uniformly on [-a, al? (c) Does (f) converge uniformly on R? Q4 You are given the series n2 +r2 (a) Prove that the series converges uniformly on [-a, al for each a > 0. (b) Prove that the sum F(r) is well defined and continuous on R. (c) Prove that the series does not converge uniformly on R. Q5 You are given the series I n2r2 (b) Let a >0. Does (f.) converge...
PLEASE use the THEORY below to give PROOF STEP BY STEP. This is an analysis class. Thank you. application of power series\Weierstrass M-test\term by term differentiability of power series sequence and series of function: pointwise and the theorem of uniform convergence which function is integrable: continuous and monotone Fri 19 Apr: The Fundamental Theorem of Calculus. (§7.5.) Wed 17 Apr: Example (∫10x2dx=1/3∫01x2dx=1/3). Basic properties of the integral. (mostly Theorem 7.4.2.) Fri 12 Apr: More on integrability, basic properties of the...