4. (a) Define when two elements of a group are conjugate to each other. State and de- duce the cl...
Please show all steps clearly.
4. (a) Define when two elements of a group are conjugate to each other. State and de- duce the class equation using the decomposition of a group in conjugacy classes (b) Let G be a finite group and p a prime number such that p divides G. Prove that there is a subgroup H of G such that |H p. (c) Let p be a prime number. Prove that any positive integer n, any group with p" elements is solvable
4. (a) Define when two elements of a group are conjugate to each other. State and de- duce the class equation using the decomposition of a group in conjugacy classes (b) Let G be a finite group and p a prime number such that p divides G. Prove that there is a subgroup H of G such that |H p. (c) Let p be a prime number. Prove that any positive integer n, any group with p" elements is solvable