Implicit differentiation is a special case of the chain rule for derivatives. Generally differentiation problems involve functions i.e. #y=f(x)# - written explicitly as functions of #x#. However, some functions y are written implicitly as functions of #x#. So what we do is to treat #y# as #y=y(x)# and use chain rule. This means differentiating #y# w.r.t. #y#, but as we have to derive w.r.t. #x#, as per chain rule, we multiply it by #(dy)/(dx)#.