1. A random variable X has a PDF given by: -1 , otherwise x 2 f(x)...
The pdf of a random variable X is given as f(x)= k(1-1/x^2); 13x3 otherwise Find the value of k for which the above pdf is valid Find the value of V[X]
Suppose the random variable X has probability density function (pdf) - { -1 < x<1 otherwise C fx (x) C0 : where c is a constant. (a) Show that c = 1/7; (b) Graph fx (х); (c) Given that all of the moments exist, why are all the odd moments of X zero? (d) What is the median of the distribution of X? (e) Find E (X2) and hence var X; (f) Let X1, fx (x) What is the limiting...
3. Consider a continuous random variable X with pdf given by 0, otherwise This is called the exponential distribution with parameter X. (a) Sketch the pdf and show that this is a true pdf by verifying that it integrates to 1 (b) Find P(X < 1) for λ (c) Find P(X > 1.7) for λ : 1
(1 point) The pdf of a continuous random variable X is given by 0 otherwise (a) Find E(X). (b) Find Var(X)
Problem 30.12 Let X be a random variable with pdf f()2 50)or5000 and 0 otherwise. Determine the median of X
2. Let X be a continuous random variable with pdf ca2, 1 f(x) otherwise, where the parameter c is constant (with respect to x) (a) Find the constant c (b) Compute the cumulative distribution function F(x) of X (c) Use F(x) (from b) to determine P(X 1/2) (d) Find E(X) and V(X)
2. Suppose X is a continuous random variable with the probability density function (i.e., pdf) given by f(x) - 3x2; 0< x < 1, - 0; otherwise Find the cumulative distribution function (i.e., cdf) of Y = X3 first and then use it to find the pdf of Y, E(Y) and V(Y)
2. Let X be a continuous random variable with pdf f(x) = { cr", [w] <1, f() = 0. Otherwise, where the parameter c is constant (with respect to x). (a) Find the constant c. (b) Compute the cumulative distribution function F(2) of X. (c) Use F(2) (from b) to determine P(X > 1/2). (d) Find E(X) and V(X).
2. A continuous random variable X has PDF SPI? 1€ (-2,2] fx() = 0 otherwise (a) Find the CDF Fx (x). (b) Suppose 2 =9(X), where gle) = { " Find the (DF, PDF of
Let X be a continuous random variable with PDF fx(x)- 0 otherwise We know that given Xx, the random variable Y is uniformly distributed on [-x,x. 1. Find the joint PDF fx(x, y) 2. Find fyo). 3. Find P(IYI <x3) Let X be a continuous random variable with PDF fx(x)- 0 otherwise We know that given Xx, the random variable Y is uniformly distributed on [-x,x. 1. Find the joint PDF fx(x, y) 2. Find fyo). 3. Find P(IYI
Post an Article
Post an Answer
Post a Question
with Answer
Self-promotion: Authors have the chance of a link back to their own personal blogs or social media profile pages.