(1 point) Suppose that the matrix A has the following eigenvalues and eigenvectors 2-2i and -2+2i Write the solution to...
Suppose that the matrix A A has the following eigenvalues and eigenvectors: (1 point) Suppose that the matrix A has the following eigenvalues and eigenvectors: 2 = 2i with v1 = 2 - 5i and - 12 = -2i with v2 = (2+1) 2 + 5i Write the general real solution for the linear system r' = Ar, in the following forms: A. In eigenvalue/eigenvector form: 0 4 0 t MODE = C1 sin(2t) cos(2) 5 2 4 0 0...
(1 point) Suppose that the matrix A has the following eigenvalues and eigenvectors: 4 = 2 with vi = and |_ G 12 = -2 with v2 = Write the solution to the linear system r' = Ar in the following forms. A. In eigenvalue/eigenvector form: x(t) (50) = C1 + C2 e e B. In fundamental matrix form: (MCO) = I: C. As two equations: (write "c1" and "c2" for C1 and c2) x(t) = yt) =
(1 point) Suppose that the matrix A has the following eigenvalues and eigenvectors: A1 = 4 with = and [2] [i] Az = 3 with Ū2 = Write the solution to the linear system r' = Ar in the following forms. A. In eigenvalue/eigenvector form: t (10) -- + C2 e e B. In fundamental matrix form: (39) - g(t). C. As two equations: (write "c1" and "c2" for C and C2) X(t) = g(t) = Note: if you are...
(1 point) Suppose that the matrix A has repeated eigenvalue with the following eigenvector and generalized eigenvector: X= -4 with eigenvector v = and generalized eigenvector ū= [] (-1) Write the solution to the linear system r' = Ar in the following forms. A. In eigenvalue/eigenvector form: t t [CO] = C1 + C2 + I g(t). e . - 1 B. In fundamental matrix form: [CO] C. As two equations: (write "c1" and "c2" for 1 and 2) X(t)...
(1 point) Suppose that the matrix A has repeated eigenvalue with the following eigenvector and generalized eigenvector: i = -3 with eigenvector v = and generalized eigenvector w= = [-] = [4] Write the solution to the linear system r' = Ar in the following forms. A. In eigenvalue/eigenvector form: 1 (O) = - 18.05.8:8)... y(t) B. In fundamental matrix form: (O)- x(1) y(t) [:] C. As two equations: (write "c1" and "c2" for c and c2) X(t) = yt)...
(1 point) Consider the linear system "(-1: 1) y. a. Find the eigenvalues and eigenvectors for the coefficient matrix. 1 v1 = and 2 V2 b. For each eigenpair in the previous part, form a solution of y' = Ay. Use t as the independent variable in your answers. (t) = and yz(t) c. Does the set of solutions you found form a fundamental set (i.e., linearly independent set) of solutions? Choose
Suppose A is a symmetric N X N matrix with eigenvectors vi, i = 1; 2; 3 ...N withcorresponding eigenvalues ?i, i = 1; 2; 3 ...N.Pick any two distinct eigenvalues (assuming such a pair exists). Let's call them ?1 and?2 and their corresponding eigenvectors v1 and v2.Write down the matrix equations that show that v1 and v2 are eigenvectors of A.
8. 20 pts.] Suppose that a 2 x2 matrix A has the following eigenvalues and eigenvectors: () 12, 1 r2=1, 2 2 (a) Classify the equilibrium 0 (node, saddle, spiral, center). Is it stable or unstable? (b) Sketch the trajectories of the system A , where a the phase plane below. (c) On the next page, sketch the graphs of r1 (t) and 2(t) versus t for the solution that satisfies the initial condition x1(0) = 1, x2(0) = 1...
(1 point) In this problem you will solve the nonhomogeneous system 1 A. Write a fundamental matrix for the associated homogeneous system = B. Compute the inverse C. Multiply by g and integrate +ci dt +c2 (Do not include c and c2 in your answers). D. Give the solution to the system C1+ (Do not include ci and c2 in your answers). If you don't get this in 2 tries, you can get a hint. (1 point) In this problem...
Solving 1. Let -Ar, A constant, with real and distinct eigenvalues 3-1 0 2-2 3 A 2 0 0 (a) Find the eigenvalues and the corresponding eigenvectors for the matrix A. (b) Use (a) to write down a fundamental matrix Φ(t) for the system z' = Az, and use Φ(t) to calculate the solution of this system that satisfies the initial condition (0)0
Post an Article
Post an Answer
Post a Question
with Answer
Self-promotion: Authors have the chance of a link back to their own personal blogs or social media profile pages.