Homework Help Question & Answers

How do you prove #sin (x + y + z) = sin x cos y cos z + cos x sin y cos z + cos x cos y sin z - sin x sin y sin z#?

How do you prove #sin (x + y + z) = sin x cos y cos z + cos x sin y cos z + cos x cos y sin z - sin x sin y sin z#?
0 0
Next > < Previous
ReportAnswer #1

see below

Explanation:

Use Formulas: #sin (A+B)=sinAcosB+cosAsinB#

#cos(A+B)=cosAcosB-sinAsinB#

#A=x+y, B=z#

Left Side:#=sin((x+y)+z)=sin (x+y)cosz+cos(x+y)sinz#

#=(sinxcosy+cosxsiny)cosz+(cosxcosy-sinxsiny)sinz#

#=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz#

#=#Right Side

answered by: Bdub
Know the answer?
Add Answer of:
How do you prove #sin (x + y + z) = sin x cos y cos z + cos x sin y cos z + cos x cos y sin z - sin x sin y sin z#?
Your Answer: Your Name: What's your source?
Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Free Homework App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.