A block of mass M is pulled over a rough horizontal surface. The block has a...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of u. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of 0 with the horizontal. The box was initially travelling to the right at speed u = 1.7". If M =9.4kg,...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of . The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of 0 with the horizontal. The box was initially travelling to the right at speed v = 2.7 m. If M...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of u. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of 0 with the horizontal The box was initially travelling to the right at speed v 1.4 m. If M =8.5kg,...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of u. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of 0 with the horizontal. The box was initially travelling to the right at speed v = 2.2 m. If M...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of u. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of 0 with the horizontal. The box was initially travelling to the right at speed v = 2.7 m. If M...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of pl. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of with the horizontal. The box was initially travelling to the right at speed v = 2.3 If M =9.1kg, u=0.22,...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of u. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of with the horizontal. The box was initially travelling to the right at speed v = 2.3". If M = 8.7kg,...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of u. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of with the horizontal. The box was initially travelling to the right at speed v = 2.7 If M =9.0kg, u=0.17,...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of u. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of with the horizontal. The box was initially travelling to the right at speed u = 1.5". If M = 8.7kg,...
A block of mass M is pulled over a rough horizontal surface. The block has a coefficient of kinetic friction with the surface of p. The block is subject to the normal force, the friction force, the force of gravity, and a force from a rope of magnitude T which pulls up and to the right at an angle of 0 with the horizontal. The box was initially travelling to the right at speed v = 1.3" If M =9.7kg,...