The distance X between trees in a given forest has a probability density function given f...
1. 20 points Let X be a random variable with the following probability density function: f(x)--e+1" with ? > 0, ? > 0, constants x > ?, (a) 5 points Find the value of constant c that makes f(x) a valid probability mass function. (b) 5 points Find the cumulative distribution function (CDF) of X.
2. Suppose X is a continuous random variable with the probability density function (i.e., pdf) given by f(x) - 3x2; 0< x < 1, - 0; otherwise Find the cumulative distribution function (i.e., cdf) of Y = X3 first and then use it to find the pdf of Y, E(Y) and V(Y)
4. (30pts) A continuous random variable X has the probability density function: hx - 1 sx 32 f(x) =Jo-hx 2 x 3 0 x >3 which ean bo graphed as f(x) 1 2 a) Find h which makes f(x) a valid probability density function b) Find the expected value E(X) of the probability density function f(x) c) Find the cumulative distribution function F(x). Show all you work
PHYS1047 a) Given a random variable x, with a continuous probability distribution function fx) 4 marks b) The life expectancy (in days) of a mechanical system has a probability density write down equations for the cumulative distribution C(x) and the survival distribution Px). State a relationship between them. function f(x)=1/x, for x21, and f(x)=0 for x <1. i Find the probability that the system lasts between 0 and I day.2 marks i) Find the probability that the system lasts between...
Q1: Suppose the probability density function of the magnitude X of a bridge (in newtons) is given by fx)-[e(1+3) sxs2 otherwise (a) Find the value of c. (b) Find the mean and variance (c) Find P(1 <x<2.25) (d) Find the cumulative distribution function.
Suppose that a random variable X has a (probability) density function given by 52e-2, for x > 0; f(x) = 0, otherwise, (i) Calculate the moment generating function of X. [6 marks] (ii) Calculate E(X) and E(X²). [6 marks] (iii) Calculate E(ex/2), E(ex) and E(C3x), if they exist. [3 marks] (iv) Based on an independent random sample X = {X1, X2, ..., Xn} from the dis- tribution of X, provide a consistent estimator for 0 = E(esin(\)), where sin() is...
Suppose density function positively valued continuous random variable X has the probability a fx(x)kexp 20 fixed 0> 0 for 0 o0, some k > 0 and for (a) Find k such that f(x) satisfies the conditions for a probability density function (4 marks) (b) Derive expressions for E[X] and Var[X (c) Express the cumulative distribution function Fx(r) in terms of P(), the stan dard Normal cumulative distribution function (8 marks) (8 marks) (al) Derive the probability density function of Y...
7. The random variables X and Y have joint probability density function f given by 1 for x > 0, |y| 0 otherwise. 1-x, Below you find a diagram highlighting the (r, y) pairs for which the pdf is 1 (a) Calculate the marginal probability density function fx of X (b) Calculate the marginal cumulative distribution function Fy of Y (c) Are X and Y independent? Explain.
7. The random variables X and Y have joint probability density function f given by 1 for x > 0, |y| 0 otherwise. 1-x, Below you find a diagram highlighting the (r, y) pairs for which the pdf is 1 (a) Calculate the marginal probability density function fx of X (b) Calculate the marginal cumulative distribution function Fy of Y (c) Are X and Y independent? Explain.
For a continuous random variable X with the following probability density function (PDF): fX(x) = ( 0.25 if 0 ≤ x ≤ 4, 0 otherwise. (a) Sketch-out the function and confirm it’s a valid PDF. (5 points) (b) Find the CDF of X and sketch it out. (5 points) (c) Find P [ 0.5 < X ≤ 1.5 ]. (5 points)