Question

Let X1, X2, ..., Xn be a random sample of size n from the distribution with probability density function f(x1) = 2 Æ e-dz?, x

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 va ent? *>0, 130 TT 0,7W X, 82. Xn as Îme 23 L(+/4, M - Xu) = ( 21 M/? e dare? logla nlog (3,4) + h log - deni? hange - Ex(e) AMME=8 - Elw= sa tim, da je ten efter de du²t 2 dndnadt Elm o no cēt) E(N) = tf x = ml = who - At a man Amme : T* m1^2 dy

Add a comment
Know the answer?
Add Answer to:
Let X1, X2, ..., Xn be a random sample of size n from the distribution with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Let X1, X2, ..., Xn be a random sample of size n from the distribution with probability density function f(x;) = 2xAe-d...

    Let X1, X2, ..., Xn be a random sample of size n from the distribution with probability density function f(x;) = 2xAe-de?, x > 0, 1 > 0. a. Obtain the maximum likelihood estimator of 1. Enter a formula below. Use * for multiplication, / for divison, ^ for power. Use mi for the sample mean X, m2 for the second moment and pi for the constant 1. That is, n mi =#= xi, m2 = Š X?. For example,...

  • Let X1, X2, ..., Xn be a random sample from the distribution with probability density function...

    Let X1, X2, ..., Xn be a random sample from the distribution with probability density function (0+1) A_1 fx(x) = fx(x; 0) = 20+1-xº(8 ?–1(8 - x), 0 < x < 8, 0> 0. a. Obtain the method of moments estimator of 8, 7. Enter a formula below. Use * for multiplication, / for divison, ^ for power. Use mi for the sample mean X and m2 for the second moment. That is, m1 = 7 = + Xi, m2...

  • Let > 0 and let X1, X2, ..., Xn be a random sample from the distribution with the probability density function f(x;...

    Let > 0 and let X1, X2, ..., Xn be a random sample from the distribution with the probability density function f(x; 1) = 212x3 e-tz, x > 0. a. Find E(XK), where k > -4. Enter a formula below. Use * for multiplication, / for divison, ^ for power, lam for 1, Gamma for the function, and pi for the mathematical constant i. For example, lam^k*Gamma(k/2)/pi means ik r(k/2)/n. Hint 1: Consider u = 1x2 or u = x2....

  • Let > 0 and let X1, X2, ..., Xn be a random sample from the distribution with the probability density function f(x;...

    Let > 0 and let X1, X2, ..., Xn be a random sample from the distribution with the probability density function f(x; 1) = 212x3e-dız?, x > 0. a. Find E(X), where k > -4. Enter a formula below. Use * for multiplication, / for divison, ^ for power, lam for \, Gamma for the function, and pi for the mathematical constant 11. For example, lam^k*Gamma(k/2)/pi means ik r(k/2)/ I. Hint 1: Consider u = 1x2 or u = x2....

  • Please show all work X, be a random sample from the distribution with the probability density...

    Please show all work X, be a random sample from the distribution with the probability density function Let A0 and let X, X2, f(x; A) 24xe, x>0. a. Find E(X), where k> -8. Enter a formula below. Use* for multiplication, for divison, ^ for power, lam for A, Gamma for the r function, and pi for the mathematical constant . For example, lam k*Gamma(k/2)/pi means Akr(k/2)/T Ax2 or u =x2. Hint 1: Consider u -e"du Hint 2: I'(a) a 0...

  • Let X1, X2, Xn be a random sample from the distribution with probability density function 18+tx...

    Let X1, X2, Xn be a random sample from the distribution with probability density function 18+tx f(x; t) 0 x 10, 5 180+50t a. Find the method of moments estimator of t, t. Enter a formula below. Use * for multiplication, for division and ^ for power. Use m1 for the sample mean X. For example, 7*n^2*m1/6 means 7n2X/6. Tries 0/10 Submit Answer b. Suppose n 5, and x1-2.36, x2 5.01, X3-5.89, x4 6.77, x5=9.42. Find the method of moments...

  • Let X1, X2, ..., Xn be a random sample from the distribution with probability density function...

    Let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x;t) = Botha, 0 < x < 2, t> -4. a. Find the method of moments estimator of t, t . Enter a formula below. Use * for multiplication, / for division and ^ for power. Use m1 for the sample mean X. For example, 7*n^2*m1/6 means 7n27/6. ſ = * Tries 0/10 b. Suppose n=5, and x1=0.36, X2=0.96, X3=1.16, X4=1.36, X5=1.96. Find the...

  • Let X1, X2, Xn be a random sample from the distribution with probability density function >...

    Let X1, X2, Xn be a random sample from the distribution with probability density function > - 7+tx 7 f(x; t) 0 x 2 2 14+2t a. Find the method of moments estimator of t, t. Enter a formula below. Use * for multiplication, / for division and A for power. Use m1 for the sample mean X. For example, 7*n^2*m1/6 means 7n2X/6. b. Suppose n-5, and x1-0.60, x2 0.95, x3=1.06, x4 1.18, x5-1.52. Find the method of moments estimate...

  • Let X1, X2,.. .Xn be a random sample of size n from a distribution with probability...

    Let X1, X2,.. .Xn be a random sample of size n from a distribution with probability density function obtain the maximum likelihood estimator of θ, θ. Use this maximum likelihood estimator to obtain an estimate of P[X > 4 when 0.50, 2 1.50, x 4.00, 4 3.00.

  • Let X1, X2,... X,n be a random sample of size n from a distribution with probability...

    Let X1, X2,... X,n be a random sample of size n from a distribution with probability density function obtain the maximum likelihood estimator of λ, λ. Calculate an estimate using this maximum likelihood estimator when 1 0.10, r2 0.20, 0.30, x 0.70.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT