Question

An electron is traveling in the positive x direction. A uniform electric field is present and...

An electron is traveling in the positive x direction. A uniform electric field is present and oriented in the negative z direction. If a uniform magnetic field with the appropriate magnitude and direction is simultaneously generated in the region of interest, the net force on the electron can be made to have a magnitude of zero. What must the direction of the magnetic field be?

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Solutiea 下- 亡 magnetic ield he P B

Add a comment
Know the answer?
Add Answer to:
An electron is traveling in the positive x direction. A uniform electric field is present and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 8. An electron is launched along the x-direction into a region where both a uniform electric...

    8. An electron is launched along the x-direction into a region where both a uniform electric and magnetic field are present. The electric field is known to point along the y- direction and the magnetic field's x-component is known to be zero. Furthermore, the figure below shows the y-component of the net force on the particle as a function of the speed with which it is launched into the field region. This means that different launch speeds amount to different...

  • A uniform magnetic field of magnitude 0.80 T in the negative z-direction is present in a...

    A uniform magnetic field of magnitude 0.80 T in the negative z-direction is present in a region of space. A uniform electric field is also present. An electron that is projected with an initial velocity v0 = 9.1 × 104 m/s in the positive x-direction passes through the region without deflection. What is the electric field vector in the region?

  • A uniform magnetic field is in the positive z direction. A positively charged particle is moving...

    A uniform magnetic field is in the positive z direction. A positively charged particle is moving in the positive x direction through the field. The net force on the particle can be made zero by applying an electric field in what direction?

  • An electron traveling horizontally enters a region where a uniform electric field of 15 N/C is...

    An electron traveling horizontally enters a region where a uniform electric field of 15 N/C is directed upward. What is the magnitude and direction of the force exerted on the electron once it has entered the field?

  • A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...

    A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 3.09 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 2030 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 3.58 V/m, (b)...

  • A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...

    A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 2.52 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 1960 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 3.44 V/m, (b)...

  • A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...

    A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 3.26 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 1980 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 5.92 V/m, (b)...

  • A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...

    A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 2.10 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 2600 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 3.14 V/m, (b)...

  • A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...

    A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 1.90 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 2600 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 4.79 V/m, (b)...

  • A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...

    A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 3.26 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 1980 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 5.92 V/m, (b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT