3. There are two firms that compete according to Cournot competition. Firm 1 has a cost...
3. There are two firms that compete according to Cournot competition. Fim 1 has a cost func tion Cia1) 318. Firm 2 has a cost function C2()3. These firms cannot discriminate, so there is just one price that is determined by the aggregate demand. The inverse demand equation is P Q) 300-0 Where total supply 0-2 (a) Setup the profit maximization problem for firm 1 with all necessary equations plugged in. (2 point) (b) Solve firm I's profit maximization peoblem...
7. There are two firms that compete according to Cournot competition. Firm 1 has a cost function C1(91) = 2491 +5. Firm 2 has a cost function C(92) = 1022 +10. These firms cannot discriminate, so there is just one price that is determined by the aggregate demand. The inverse demand equation is P(Q) = 80 - Where total supply Q = 91 +92. (a) Setup the profit maximization problem for firm 1 with all necessary equations plugged in. (2...
3. Suppose the two firms cannot collude and instead compete in the Cournot Model in the market described in question 1 (market demand is still Q = 18 – P) with the same cost (C(Q)=Q2). a. Set up firm 1's profit maximization. b. Solve for firm 1's best response function. C. Solve for firm 1's quantity, firm 2's quantity, the equilibrium market quantity, and price. Show your work. d. Is this a Nash equilibrium? e. Do consumers prefer the Cournot...
Suppose the two firms cannot collude and instead compete in the Cournot Model in the market described in question 1 (market demand is still Q=18-P) with the same cost (C(Q)=1/2 *Q^2). Set up firm 1’s profit maximization. Solve for firm 1’s best response function. Solve for firm 1’s quantity, firm 2’s quantity, the equilibrium market quantity, and price. Show your work. Is this a Nash equilibrium? Do consumers prefer the Cournot competition equilibrium over the collusion of the two firms...
3. Suppose the two firms cannot collude and instead compete in the Cournot Model in the market described in question 1 (market demand is still Q = 18 – P) with the same cost (C(Q)=Q2). e. Do consumers prefer the Cournot competition equilibrium over the collusion of the two firms in question 3? f. Do the two firms prefer Cournot competition over colluding (assuming the collusion agreement is to split joint profits equally)?
Suppose we have a market demand Q = 18 – P and a cost C(Q) 9) = 3Q?. (10 points) Suppose the two firms cannot collude and instead compete in the Cournot Model in the market described in question 1 (market demand is still Q 18 – P) with the same cost (C(q) = -23. 2 a. Set up firm 1's profit maximization. b. Solve for firm 1's best response function. C. Solve for firm 1's quantity, firm 2's quantity,...
Suppose two firms cannot collude and compete in the Cournot Model. Market demand is Q = 18 – P with the cost (c(Q) =*Q). a. Set up firm l's profit maximization. b. Solve for firm l's best response function. c. Solve for firm l's quantity, firm 2's quantity, the equilibrium market quantity, and price. Show your work. d. Is this a Nash equilibrium?
Mathematical Question 3 (30pts) 3. Consider two firms are performing Cournot price competition in two differentiated goods markets. Firm 1 produces goods 1, and firm 2 produces goods 2, and two market demand functions are given by 91 (P1,P2) = 12-2p1 + P2 and 921,P2) = 12-2p2 + P 1. Furthermore, assume that the two firms have the same cost function such that fixed cost is $20 and variable cost is zero. a. (10pts) Calculate the equilibrium prices, quantities and...
only part e 7. There are two firms that compete according to Couro competition. Firm has a cofection (n) = 241+5. Firm 2 has a cost function () = 10 + 10. These firms cannot discrimine, there is just one price that is determined by the aggregate demand. The inverse demand equations PQ) = 80- Where total supply + (a) Setup the profit maximisation problem for firm 1 h all commary equation plugged in 2 (6) Solve firm l's profit...
Problem 1. Cournot Competition with Two Firms Suppose there are two identical firms engaged in quantity competition (Cournot competition). The demand is P=1-Q where Q =91 +92. Assume that firm's i total cost of production is TC(qi) Compute the Cournot equilibrium (i.e., quantities, price, and profits).