Given the path C: x(t) = (cost, sint, t), 0<t<2n. Let f(t, y, z) = x2...
Let F(x,y,z) = 4i – 3j + 5k and S be the surface defined by z= x2 + y2 and 22 + y2 < 4. Evaluate SJ, F. nds, where n is the upward unit normal vector.
Let F(x, y, z) = 4i – 3j + 5k and S be the surface defined by z = x2 + y2 and x2 + y2 < 4. Evaluate SJ, F.nds, where n is the upward unit normal vector.
Let F = < x-eyz, xexx, z?exy >. Use Stokes' Theorem to evaluate slice curlĒ ds, where S is the hemisphere x2 + y2 + z2 = 1, 2 > 0, oriented upwards.
:) IS (x+y+z)ds X-1 (b): Find the work done by F over the curve in the direction of increasing t, where F =< x² + y, y2 + 1, ze >, r(t) =< cost, sint,t/27 >, Osts 27. y-2=2-3 =+ C) -1-2 I-3
evaluate JJ. (< –Y) A. ) Integrate f(x, y, z) = x2 + y2 + 22 over the cylinder x2 + y2 < 2,-2 <2<3 (IL dx dy dz Feraluate
Let F(x, y,z) = < x + y2,y + z2,z + x2 >, let S be a surface with boundary C. C is the triangle with vertices (1,0,0), (0,1,0), (0,0,1). 8. a. Evaluate F dr curl F ds b.
Let F(x, y,z) = , let S be a surface with boundary C. C is the triangle with vertices (1,0,0), (0,1,0), (0,0,1). 8. a. Evaluate F dr curl F ds b.
Let S be the surface of the box given by {(x, y, z) – 2 <<<0, -1<y<2, 0<z<3} with outward orientation. Let Ę =< -æln(yz), yln(yz), –22 > be a vector field in R3. Using the Divergence Theorem, compute the flux of F across S. That is, use the Divergence Theorem to compute SS F. ds S
F(x, y, z) =< P, Q, R >=<-y +z,x-z,x-y> S: z = 9 - x2 - y2 and z>0 (9a) Evaluate W= $ P dx + Qdy + Rdz с
(9) Stokes' Theorem for Work in Space F(x, y, z) =< P,Q,R >=<-y+z, x - 2,x - y > S:z = 4 - x2 - y2 and z>0 (9a) Evaluate W= $ Pdx + Qdy + Rdz с (9) Stokes' Theorem for Work in Space F(x, y, z) =< P,Q,R>=<-y+z, x - 2, x - y > S:z = 4 - x2 - y2 and z 20 (9b) Verify Stokes' Theorem.
Question 1 1 pts Let F= (2,0, y) and let S be the oriented surface parameterized by G(u, v) = (u? – v, u, v2) for 0 <u < 12, -1 <u< 4. Calculate | [F. ds. (enter an integer) Question 2 1 pts Calculate (F.ds for the oriented surface F=(y,z,«), plane 6x – 7y+z=1,0 < x <1,0 Sysi, with an upward pointing normal. (enter an integer) Question 3 1 pts Calc F. ds for the oriented surface F =...