a.
From the regression output, we know that the regression learned three parameters: the intercept, size (cubic metres) and weight(00's kg).
Let us say our regression equation is of the form:
y = intercept + b1*size + b2*weight
Since intercept, b1 and b2 are known to us, we know:
y= -0.20018 + 2.211198 * size - 0.07185 * weight
Let's discuss each of these parameters:
intercept: The coefficient of this variable is -0.20018. This means that when size are weight are 0, the value of y is -0.20018. This is known as the y-intercept value (or simply intercept) because this is the value at which the regression line cuts the y-axis.
The null hypothesis is that this variable is not significant. We need significant proof to think otherwise. iIf the p value is less than 0.05, then we will reject the null hypothesis.
The p-value is quite high (0.8192); thus we will say that this variable is not significant and the null hypothesis is not rejected.
size: The coefficient of this variable is 2.211198. This means that with every unit change in the size, the value of y changes by ~2.2 units. Here, we assume that the value of other variables is constant.
The null hypothesis is that this variable is not significant. We need significant proof to think otherwise. iIf the p value is less than 0.05, then we will reject the null hypothesis.
The p-value is quite low (0.0136); thus we will say that this variable is significant and the null hypothesis is rejected.
size: The coefficient of this variable is -0.07185. This means that with every unit change in the size, the value of y changes by ~-0.07 units. Here, we assume that the value of other variables is constant.
The null hypothesis is that this variable is not significant. We need significant proof to think otherwise. iIf the p value is less than 0.05, then we will reject the null hypothesis.
The p-value is quite high (0.6845); thus we will say that this variable is not significant and the null hypothesis is not rejected.
b.
The correlation matrix has not been given. Please update the question or send me the correlation matrix in the comments, and I will update this part of the answer.
Happy learning!
Figure 2 Regression Output SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Regression Statistics Multiple R 0.88012 R Square 0.77461 Adjusted R Square 0.77190 Standard Error 56.6927 Observations 253 ANOVA Significance 285.2516 MS 916816.787 3214.0637 Regression Residual Total 0.000 2750450.3598 800301.8665 3550752.226 252 Intercept Income Coefficients Standard Error 70.2382 15.8338 5.45850 .2485 t Stat P-value 4.4360 0.000014 21.96960 .000 Lower 3 9.053 4.969 "pper 95% 1.4234 479 HULLU LIIS TILIR. SUMMARY OUTPUT Regression Statistics Multiple R 0.8778 R Square Adjusted R Square 0.6558 Standard Error Observations ANOVA ANOVA Significance Regression 45.3528 de...
Dep.= % WRK Indep.= % MGT SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Significance df SS MS F F Regression 102.1488 148.9539 Residual Total 12.0000 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept % MGT 0.4543 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 67.0000 67.8474 65.8779 69.8169 72.0000 70.1189 68.2003 72.0375 76.0000 71.9361 69.7884 74.0838 Dep.= % MGT...
SUMMARY OUTPUT Regression Statistics Multiple R 0.633614748 R Square 0.401467649 Adjusted R Square 0.388732918 Standard Error 7373785408 Observations ANOVA SS SS F Significance F 1 17141221.72 17141222 31.52541 1.02553E-06 4725555174.28 543727.1 48 4 2696396 1 17141221.72 17141222 3152541 Siewicowe Regression Residual Total Coefficients Standard Error Star P-value 2194.707265 332.0870736 6.608831 3.21E-08 40.870917 7279205668 5.61475 1.03E-06 Coefficients Standard Porn Photo Intercept Lower 95% Upper 95% Lower 95.096 Upper 95.0% 1526,634245 2862.780285 1526.634245 2862.780285 26.22704404 55.51478995 26.22704404 55.51478995 54 SUMMARY OUTPUT Regression...
Following a regression analysis output : SUMMARY OUTPUT Regression Statistics Multiple R 0.719422 R Square Adjusted R Square 0.477366 Standard Error Observations 14 ANOVA df SS MS F Regression 1 3.028885709 Residual 12 2.823257148 Total 13 5.852142857 Coefficients Standard Error t Stat P-value Intercept 1.157091 0.566482479 0.063699302 Satisfaction with Speed of Execution 0.636798 0.177478218 0.003726861 Group of answer choices R Square is 0.517 Standard error is 0.386 Residuals are 2.823 F-test is 11.87 R Square is 0.517 Standard error is...
Dep.- WRK Indep.- MGT SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted RSquare Standard Error Observations ANOVA Regression 102.1488 Residual Total 12.00001 Standard Coefficients P.valuell Lower 95 Upper 9524 LUV Upper 95 Intercept 6 MGT 0.4543 Predicted Predicted Lower Upper Lower XO Value Value 67.0000 65.8779 69.8169 72.0000 67.8474 70.1189 71.9361 68.2003 22.0375 74,0828 76.0000 69.7884 Dep.-% MGT Indep96 WRK SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations Observations ANOVA Regression 460.8873 148.9539...
SUMMARY OUTPUT Regression Statistics Multiple R 0.818616296 R Square 0.67013264 Adjusted R Square 0.658351663 Standard Error 9.16867179 Observations 30 ANOVA df SS MS F Significance F Regression 1 4781.80995 4781.80995 56.8826 3.2455E-08 Residual 28 2353.807187 84.06454239 Total 29 7135.617137 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 28.21496731 3.739591617 7.544932763 3.22E-08 20.55476114 35.87517349 Dividend 2.367177613 0.313863719 7.542055589 3.25E-08 1.724256931 3.010098296 c. You run a regression analysis using Data Analysis to answer the following question: Is stock selling...
SUMMARY OUTPUT Regression Statistics Multiple R 0.985689515 R Square 0.97158382 Adjusted R Square 0.968940454 Standard Error 754.6653051 Observations 48 ANOVA df SS MS F Significance F Regression 4 837320651.9 209330163 367.555599 1.23563E-32 Residual 43 24489348.08 569519.723 Total 47 861810000 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -979.9824986 2587.408411 -0.3787506 0.70673679 -6197.988856 4238.02386 -6197.988856 4238.023859 Price (cents) -39.65930534 3.380682944 -11.731152 5.4685E-15 -46.47710226 -32.841508 -46.47710226 -32.84150842 Competitors Price (cents) 39.71320378 3.717321495 10.6832847 1.1179E-13 32.21651052 47.209897...
SUMMARY OUTPUT Regression Statistics Multiple R 0.99806038 R Square 0.996124522 Adjusted R Square 0.995155653 Standard Error 387.1597665 Observations 16 ANOVA df SS MS F Significance F Regression 3 4.62E+08 1.54E+08 1028.131 9.91937E-15 Residual 12 1798712 149892.7 Total 15 4.64E+08 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 1946.802039 504.1819 3.861309 0.002263 848.2839829 3045.32 848.284 3045.32 XRay (x1) 0.038577091 0.013042 2.957935 0.011966 0.010161233 0.066993 0.010161 0.066993 BedDays (x2) 1.039391967 0.067556 15.38573 2.91E-09 0.892201042 1.186583...
5- Interpret the coefficient of determination (R-squared) and the F test. SUMMARY OUTPUT Regression Statistics Multiple R 0.8811 R Square 0.7764 Adjusted R Square 0.7205 Standard Error 14.7724 Observations 16 ANOVA df SS MS F Regression 3 9091.7392 3030.5797 13.8874 Residual 12 2618.7008 218.2251 Total 15 11710.44 Coefficients Standard Error t Stat P-value Intercept 29.1385 174.7427 0.1668 0.8703 PFH -2.1236 0.3405 -6.2361 0.0000 PR 1.0345 0.4667 2.2164 0.0467 M 3.0871 0.9993 3.0892 0.0094
Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 0.72 0.51 0.38 99.45 6 Anova df SS MS F Significance F 0.11 1 41497.60 41497.60 4.20 Regression Residual 4 39561.23 9890.31 Total 5 81058.83 t Stat P-value Coefficients Standard Error 1423.60 564.95 2.52 0.07 Intercept X Variable 1 Lower 95% Upper 95% -144.96 2992.16 -0.11 0.72 Lower 95.0% Upper 95.0% -144.96 2992.16 -0.11 0.72 0.31 0.15 2.05 0.11 Assume that Craig's Fresh and Hot Pancake Restaurant does...