The total length of the piping system made of cast iron providing hot water to a...
Please solve a,b,c,d,e,f 1) A water fountain is to be installed at a remote location by attaching a cast iron pipe directly to a water main through which water is flowing. The entrance to the pipe is sharp-edged 15m (K-0.5), and the 15m long piping system involves three 90 bends without vanes (K1.1), a fully open gate valve (K.-0.2), and a fully open angle valve (K-5). If the diameter of the pipe is 2 em and the system is to...
Question 6 - Minor Losses A tank and piping system is shown. The galvanized pipe diameter is 1.5 cm, and the total length of pipe is 10 m. The two 90° elbows are threaded fittings. The vertical distance from the water surface to the pipe outlet is 5 m. The velocity of the water in the tank is negligible. Find (a) the exit velocity of the water and (b) the height (h) the water jet would rise on exiting the...
Paton P'S 2 107 3.6 The inlet of a cast iron pipe, 120 m long and 150 mm a dam. The pipe is 1/25 slope and contains a 90 bend (R/d = 1,0) diameter is 2 m below the wa.ter level of laid with a and the water exits to the atmosphere. Take the water temperature B.S 20 C (then 10 kg/ms) and determine the flow rate. [0,045 m2/s] 3.7 Water is discharged from a reservoir through a sharp outlet...
Problem 4 (50 points) water is discharged from a reservoir at a rate of 18.103 m2/s using two horizontal cast iron pipes nected in series and a pump between them. The first pipe is 20 m long and has a 6-cm diameter, while the second pipe is 35 m long and has a 4-cm diameter. The water level in the reservoir is 30 m above the centerline of the pipe. The pipe entrance is sharp-edged. Losses associated with the connection...
fluid mechanics ASAP please Problem 4 (50 points) Water is discharged from a reservoir at a rate of 18.103 m3/s using two horizontal cast iron pipes connected in series and a pump between them. The first pipe is 20 m long and has a 6-cm diameter, while the second pipe is 35 m long and has a 4-cm diameter. The water level in the reservoir is 30 m above the centerline of the pipe. The pipe entrance is sharp-edged. Losses...
Water (p=998kg/m^3, u=0.001Pa*s) flows from reservoir A to reservoir B through the piping system shown. Each elbow has a minor loss coefficient of 1.2. Each valve has a minor loss coefficient of 3.2. The entrance and exit are both sharp edged. Determine the flow rate L/min. You now need to modify the piping system to increase the flow rate to 100L/min by reducing the length of the 25mm pipe. What must new length of the 25mm pipe be? 86. Water...
Example of Pipe Sizing The figure shows a closed piping system to supply chilled water to two heat exchangers. Size the pipe for this system, assuming schedule-40 steel pipe is used with threaded (screwed) fitting. Determine the pump flow rate and head requirements. Distances are as shown in feet. Head losses through the heat exchangers and chiller are shown as provided by the manufacturers. Q(gpm) Head Loss (ft) 70 Unit Chiller Heat Exchanger (a) 30 Heat Exchanger (b) 40 12...
Question #1. Ambient temperature water (20 °C) is flowing through the horizontal piping system shown below (not drawn to scale). There is a leak occurring in the reducing bushing that connects the larger (4" internal diameter) wrought iron pipe to the smaller (2" internal diameter) wrought iron pipe. Upstream from the leak on the larger pipe, two pressure gauges that are 15 m apart show a pressure difference of (P,-) = 2,445 kPa. Downstream from the leak on the smaller...
Water flows from the upper tank to the lower tank through a cast iron pipe of total length L-1100 ft through one half-closed gate valve, four regular 90° flanged elbows, and entrance/exit as shown. For 2 cases with the same pipe perimeter P 12 in., compute the volume flow rate (ft /s) through: circular pipe of diameter D, and equilateral triangular pipe with each side a. a) b) Note that the flow areas and hydraulic diameters will be different. Find...
A water tank filled with solar-heated water at 40°C is to be used for showers in a field using gravity-driven flow. The system includes 39 m of 1.5-cm-diameter galvanized iron piping with four miter bends (90°) without vanes and a wide-open globe valve. If water is to flow at a rate of 1.2 L/S through the shower head, determine how high the water level in the tank must be from the exit level of the shower. Disregard the losses at...