what do u mean no idea? (point) Compute the outward flux of the vector field F(x..:)...
(1 point) Compute the outward flux of the vector field F(:,, :) - 2ri + 4y + 4k across the boundary of the right cylinder with radius 5 with bottom edge at height z = 5 and upper edge at 2= 6. Note: The vectors in this field point outwards from the origin, so we would expect the flux across each face of the cylinder to be positive Part 1 - Using a Surface Integral First we parameterize the three...
(1 point) This problem will illustrate the divergence theorem by computing the outward flux of the vector field F x, y, z = 2ī + 4j + k across the boundary of the right rectangular prism: 1 sx <5,-2 Sys3,-33z37 oriented outwards using a surface integral and a triple integral over the solid bounded by rectangular prism. Note: The vectors in this field point outwards from the origin, so we would expect the flux across each face of the prism...
(1 point) This problem will illustrate the divergence theorem by computing the outward flux of the vector field F(x, y, z) -2ri + 5yj + 2k across the boundary of the right rectangular prism:-1< x< 7, -4
(1 point) This problem will illustrate the divergence theorem by computing the outward flux of the vector field F(x, y, z) = Aci+ 4y + tek across the boundary of the right rectangular prism: -ISXS 4.-2 Sys7.-2 Szs 7 criented outwards using a surface Integral and a triple integral over the solid bounded by rectangular prism. Note: The vectors in this field point outwards from the origin, so we would expect the flux across each face of the prism to...
(1 point) This problem will illustrate the divergence theorem by computing the outward flux of the vector field F(x, y, z) - 2ri + 5y + 3-k across the boundary of the right rectangular prism: -3 <<6, -15y<3,-425 oriented outwards using a surface integral and a triple integral over the solid bounded by rectangular prism. Note: The vectors in this field point outwards from the origin, so we would expect the flux across each face of the prism to be...
10. Use the Divergence Theorem to compute the net outward flux of the vector field F= <x^2, -y^2, z^2> across the boundary of the region D, where D is the region in the first octant between the planes z= 9-x-y and z= 6-x-y. The net outward flux is __. 11. Decide which integral of the Divergence Theorem to use and compute the outward flux of the vector field F= <-7yz,2,-9xy> across the surface S, where S is the boundary of...
(1 point) Compute the flux of the vector field F 3z2y2 zk through the surface S which is the cone vz2 y2 z, with 0z R, oriented downward. (a) Parameterize the cone using cylindrical coordinates (write 0 as theta). (r,)cos(theta) (r, e)rsin(theta) witho KTR and 0 (b) With this parameterization, what is dA? dA = | <0,0,(m5/2)sin^2(theta» (c) Find the flux of F through S flux
3. (5 points) Use the Divergence Theorem to find the outward flux of the vector field F(x, y, z) - 3ry? i + xe'j + 23k across the surface of the solid bounded by the cylinder y2 + z-1 and the planes z =-1 and x = 2.
3. (5 points) Use the Divergence Theorem to find the outward flux of the vector field F(x, y, z) - 3ry? i + xe'j + 23k across the surface of the solid...
#4 please
3. (12 pts). (a) (8 pts) Directly compute the flux Ф of the vector field F-(x + y)1+ yj + zk over the closed surface S given by z 36-x2-y2 and z - 0. Keep in mind that N is the outward normal to the surface. Do not use the Divergence Theorem. Hint: Don't forget the bottom! (b) (4 pts) Sketch the surface. ts). Use the Divergence Theorem to compute the flux Ф of Problem 3. Hint: The...
compute the flux of the vector field F(x,y,z) = x^2yi -2yzj + x^3y^2k over the surface of the surface of the unit cube S : 0≤x≤1, 0≤y≤1 , 0≤z≤1 verify answer using Gauss divergence therom