Question

Application of Universal Gravity non-orbital motion Kinetic Energy mp2 Escape velocity EX-11 Find the Minimum speed...


Application of Universal Gravity non-orbital motion Kinetic Energy mp2 Escape velocity EX-11 Find the Minimum speed needed fo
Application of Universal Gravity non-orbital motion Kinetic Energy mp2 Escape velocity EX-11 Find the Minimum speed needed for an object escape form the Earth surface. Gravitational mM Potential Energy U = -G G = 6.67 x 10-11 Work and Energy Woth = AE (2) Conservation of mechanical energy E = E (3) V = 0 Final: object at infinite Ey = y + Ug = źmv} + (-GMT) =0 4 Step procedures of solving work and energy problems Normal force (10) List other forces Friction force (W. - - W, -Parcos Wother 0 0 Water 012) If YES, y zero at infinity y changes? if No, do not need to consider U, 1 YES, compressing/stretching distance Is there a spring? if No, do not need to considers System initial System final Er - Ny+ Ugr + Hop E = E VA 3 Mm +-G Vi =? Initial: at the earth's surface 2GM RE = 11.2 km/s
0 0
Add a comment Improve this question
Answer #1

for object escape Initial PE=0 } e Ei Intial KE = £mv² final PET amm RE } Ee KES r tist £mv²= amm 24 Kg M = mass of earth = 5

Add a comment
Know the answer?
Add Answer to:
Application of Universal Gravity non-orbital motion Kinetic Energy mp2 Escape velocity EX-11 Find the Minimum speed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Parallel Axis Theorem: I = ICM + Md Kinetic Energy: K = 2m202 Gravitational Potential Energy:...

    Parallel Axis Theorem: I = ICM + Md Kinetic Energy: K = 2m202 Gravitational Potential Energy: AU = mgay Conservation of Mechanical Energy: 2 mv2 + u = žmo+ U Rotational Work: W = TO Rotational Power: P = TO Are Length (angle in radians, where 360º = 2a radians): S = re = wt (in general, not limited to constant acceleration) Tangential & angular speeds: V = ro Frequency & Period: Work-Energy Theorem (rotational): Weet = {102 - 10...

  • 4. Use Kepler's Second Law and the fact that L-fxp to determine at which points in...

    4. Use Kepler's Second Law and the fact that L-fxp to determine at which points in an elliptical orbit around the Sun a planet has maximum and minimum speeds. (Section 13.5 will help.) 5. At the end of example 13.10, there's an "Evaluate" blurb about how inside the surface of the Earth the force of gravity varies proportionally to the distance from the center, and it makes reference to the next chapter. which is about oscillation. Model the motion of...

  • Please use the formulate sheet and show all steps to make sure the question is worth...

    Please use the formulate sheet and show all steps to make sure the question is worth any points a) The initial ratio of deuterium (D) to hydrogen (H) in a planet's atmosphere was 175000; however, the present ratio is 1/1500 and the initial and final abundances of D are 5 x 10° atoms per m3 and 9 x 106 atoms per m2, respectively. What fraction of deuterium has been lost, and what fraction of hydrogen has been lost in this...

  • Please help answer all of question 6, thanks! Rotational Dynamics Assignment (200 Points) • Due Friday,...

    Please help answer all of question 6, thanks! Rotational Dynamics Assignment (200 Points) • Due Friday, July 31 at 5:00 pm Equations are in a separate document entitled “Equations for Rotational Dynamics Assignment” • Moments of inertia formulas are provided on the last page of this document • Show all of your work when solving equations. It is not sufficient to merely have a correct numerical answer. You need to have used legitimate equations and algebra. You also need to...

  • Rotational Dynamics Assignment (200 Points) • Due Friday, July 31 at 5:00 pm Equations are in...

    Rotational Dynamics Assignment (200 Points) • Due Friday, July 31 at 5:00 pm Equations are in a separate document entitled “Equations for Rotational Dynamics Assignment” • Moments of inertia formulas are provided on the last page of this document • Show all of your work when solving equations. It is not sufficient to merely have a correct numerical answer. You need to have used legitimate equations and algebra. You also need to have correctly used the data. • Units must...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT