[9] Given any two real numbers x and y such that x < y, show that...
We write R+ for the set of positive real numbers. For any positive real number e, we write (-6, 6) = {x a real number : -e < x <e}. Prove that the intersection of all such intervals is the set containing zero, n (-e, e) = {0} EER+
If a and b are real numbers and 1 < a <b, then a-1 > b-1. Proof by contradiction.
This is all the information given in the question.
2. For any Random Variable Y, show that yı < EY] < y2, if yı <Y < y2.
We write R+ for the set of positive real numbers. For any positive real number e, we write (-6, 6) = {x a real number : -e < x <e}. Prove that the intersection of all such intervals is the set containing zero, n (-e, e) = {0} EER+
8. Suppose that the joint density of X and Y is given by e if 0< I<, 0<y< 0, otherwise. Find P(X > 1 Y = y).
2 Suppose that f(x, y) = - and the region D is given by {(x, y) |1<<3,3 <y < 6}. y D Q Then the double integral of f(x, y) over D is S1,612,)dady
5. Describe the following sets of real numbers and find the supremum and infimum of these sets: (a) {x}\x2 – 2 <4€R} (b) {x|x+ 2 +13 – x4<4} (©) {x|x<for all neN} 6. For any two elements x and y of an ordered field, prove that _x+ y + x- x + y - x - y (a) max{x,y}=- (b) min{x,y}=-
Solve the system of inequalities by graphing.
X y < 2x-3 (y24
(10pts) 3. Use direct proof to show that if x and y are positive real numbers, then (x+y)" > " + y".
(9) Stokes' Theorem for Work in Space F(x, y, z) =< P,Q,R >=<-y+z, x - 2,x - y > S:z = 4 - x2 - y2 and z>0 (9a) Evaluate W= $ Pdx + Qdy + Rdz с (9) Stokes' Theorem for Work in Space F(x, y, z) =< P,Q,R>=<-y+z, x - 2, x - y > S:z = 4 - x2 - y2 and z 20 (9b) Verify Stokes' Theorem.