Homework Help Question & Answers

format compact format long clear y=[-0.003, 0.197, 0.3, 0.402, 0.496, 0.603, 0.7, 0.797, 0.996, 1.02]; Y=fft(y);...

WebLearn Mathematics and Statistics for Manufacturing Engineers (MATH2185 1910) Student Test Page Fourier series andDF Questi

format compact

format long

clear

y=[-0.003, 0.197, 0.3, 0.402, 0.496, 0.603, 0.7, 0.797, 0.996, 1.02];

Y=fft(y);

%% Display F[k]

fmt=strcat(['%d',' ','%-14.10f','+i(','%-14.10f',')']);

disp(sprintf('\nk F[k]'));

for ic=1:length(Y)

disp(sprintf(fmt,ic-1,real(Y(ic)),imag(Y(ic))));

end

%%

WebLearn Mathematics and Statistics for Manufacturing Engineers (MATH2185 1910) Student Test Page Fourier series andDF Question the discrete Founer transtorm is detined as: Fk-Lje k0,1,2. ..,N-1 1=0 The following nine data values are measured at evenly spaced time intervals: -0.011, 0.688, 0.983, 0.717, -0.001, -0.687, -0.952, -0.701, 0.01 For this test data, calculate the real and imaginary parts of F. Maintain at least eight decimal digit accuracy throughout all your calculations. When entering your final answers you may round your estimate to five decimal digit accuracy. For example 1.673526755 or 1.67353 See the following example from MatLab. Uses the fft() command to find the discrete Fourier transform of a set of data values y [0.5146, 0.9485,1.2788, 1.4762,1.5028, 1.3101,0.8358] ; Yafft (y) fnt-etrcat (I'd,. disp (eprintf ('\nk for ic-l:length (Y) dispisprintf (fmt, ic-1, real (Y (ic)), imag (Y (ic))) ) i -14.10f',+i(,'-14.10f,) 1) F(k) '); end F (k) 7.8668000000 -1.6329778499 +i (-0.0460558570) -0.3575862848 +1 (-0.1442516542) -0.1417358652 +i (-0.0474369403) +1 (0.0000000000 1 2 -0.1417358652 +1 (0.0474369403 -0.3575862848 +1 (0.1442516542 -1.6329778499 +1(0.0460558570 4 Re(F1) Im(F1) Skipped Skipped O Submit...O Check Syntax.. O Previous... O Test Menu... University-Discdaimer 1 About Privacy
0 0
Report
Answer #1


format compact format long clear y[-0.011, 0.688, 0.983, 0.717, -0.001, -0.687, -0.952, -0.701, 0.01 1 Y-fft(y) Display F[ k]

format compact
format long
clear

y=[-0.011, 0.688, 0.983, 0.717, -0.001, -0.687, -0.952, -0.701, 0.01];
Y=fft(y);

%%Display F[k]
fmt=strcat(['%d',' ','%-14.10f','+i(','%-14.10f',')']);
disp(sprintf('\nk F[k]'));

for ic=1:length(Y)

    disp(sprintf(fmt,ic-1,real(Y(ic)),imag(Y(ic))));

end

%%%%%%%%%%%%%%%% End of Code %%%%%%%%%%%%%%%%

Know the answer?
Add Answer to:
format compact format long clear y=[-0.003, 0.197, 0.3, 0.402, 0.496, 0.603, 0.7, 0.797, 0.996, 1.02]; Y=fft(y);...
Your Answer: Your Name: What's your source?
Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • format compact format long clear y=[-0.003, 0.197, 0.3, 0.402, 0.496, 0.603, 0.7, 0.797, 0.996, 1.02]; Y=fft(y); %% Dis...

    format compact format long clear y=[-0.003, 0.197, 0.3, 0.402, 0.496, 0.603, 0.7, 0.797, 0.996, 1.02]; Y=fft(y); %% Display F[k] fmt=strcat(['%d',' ','%-14.10f','+i(','%-14.10f',')']); disp(sprintf('\nk F[k]')); for ic=1:length(Y) disp(sprintf(fmt,ic-1,real(Y(ic)),imag(Y(ic)))); end %% WebLearn Mathematice and Statistics for Manufacturing Engineers (MATH2185 1910) Student Test Page-Fourier series and DFT C 29 Question Σί,. -2injk /N k0,1,2 ..,N-1 the discrete Fourier transform is defined as: Fr= 1 0 The following nine data values are measured at evenly spaced time intervals: -0.002, 0.203, 0.303, 0.395, 0.495, 0.598, 0.699,...

Free Homework App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.