Q 1: In an air conditioning system return air at 26°C dry-bulb temperature and 50% relative...
Name: QUESTION 1 [25 Points] Moist air enters an air conditioning system at a dry bulb temperature T., 30 'C and relative humidity фі80% and exits at a dry bulb temperature T2 179C and relative humidity ф2.50% as shown in the figure below. The condensate exits the system at 15 °C. The mass flow rate of the dry air is 2.5 kg/s. Assume the air is at atmospheric pressure P-101.3 kPa. Cooling coils T-17 C 0-50 % Pp:-6.282 kPa Ti-30...
o question: An airconditioned space is to be maintained at 26 C dry bulb temperature and 50% RH. The ambient condition is 4 27.78 kW and the latent load is 11.11 kW. 60% of the return air mass is recirculated and mixed with 40% of make-up fresh air before entering the AHU. Calculate: Room SHF -Supply flow rate (m'/sec) (assume supply temperature is 10 C lower than space's) Apparatus sensible and latent load Apparatus sensible heat factor, dew point, and...
a) What is the physical interpretation of the wet-bulb temperature? b) During winter time a room is maintained at a steady temperature and humidity by an air-conditioning system shown. 200 m3/min of room return air at 30°C, 50% relative humidity is first mixed with 40 m/min of outdoor at 10°C, 20% relative humidity. The mixed air is then introduced to a heater where the temperature of the air is raised to 45°C and supplied to the room. [Note that air...
Exercise 2 Moist air at 1 atm. barometric pressure has a dry bulb temperature of 40°C and a wet bulb temperature of 320C. Using both the equations for the moist air properties and the psychrometric chart find: g) the partial pressure of the water vapor h) humidity ratio i) relative humidity j) dew-point temperature k) specific volume 1) enthalpy of moist air Insert the data and the results from the chart in the following table: Enthalpy Specific kJ/kg m/kg Humidity...
a) What is the physical interpretation of the wet-bulb temperature? b) During winter time a room is maintained at a steady temperature and humidity by an air-conditioning system shown. 200 mº/min of room return air at 30°C, 50% relative humidity is first mixed with 40 mº/min of outdoor at 10°C, 20% relative humidity. The mixed air is then introduced to a heater where the temperature of the air is raised to 45°C and supplied to the room. (Note that air...
The atmospheric air 32 °C dry bulb temperature and 70% relative humidity supplied to the cooling coil at a rate of 45m3/min. The air cooling to the saturated state and leaving at a temperature of 16 °C. Determine: a- Specific humidity at each state. b- Wet bulb and dew point temperatures at the final state c- Final relative humidity. d- Mass of water condensed. e- Rate of heat removed from the air in kW. f- Show the process on Psychrometric...
a) What is the physical interpretation of the wet-bulb temperature? b) During winter time a room is maintained at a steady temperature and humidity by an air-conditioning system shown. 200 m/min of room return air at 30°C, 50% relative humidity is first mixed with 40 m/min of outdoor at 10°C, 20% relative humidity. The mixed air is then introduced to a heater where the temperature of the air is raised to 45°C and supplied to the room. [Note that air...
a) What is the physical interpretation of the wet-bulb temperature? b) During winter time a room is maintained at a steady temperature and humidity by an air-conditioning system shown. 200 m/min of room return air at 30°C, 50% relative humidity is first mixed with 40 m/min of outdoor at 10°C, 20% relative humidity. The mixed air is then introduced to a heater where the temperature of the air is raised to 45°C and supplied to the room. [Note that air...
the result of air measurements obtained dry bulb temperature 48 C and wet bulb temperature 29 C. By using a psychrometric chart, detemine the nature of air aa follows: a. air humidity (%) b. water content (kg water/ kg air) c. specific volume (m³/kg) d. enthalpy (kj/kg) e. condensation temperature (C) If air is in the room 162 m³, determine: f. air weight (dry air and water vapor) g. the amount of the water in the room (kg) pls help...
a) What is the physical interpretation of the wet-bulb temperature? b) During winter time a room is maintained at a steady temperature and humidity by an air-conditioning system shown. 200 m/min of room return air at 30°C, 50% relative humidity is first mixed with 40 m/min of outdoor at 10°C, 20% relative humidity. The mixed air is then introduced to a heater where the temperature of the air is raised to 45°C and supplied to the room. (Note that air...