1. Let X1, X2,... .Xn be a random sample of size n from a Bernoulli distribution...
Advanced Statistics, I need help with (c) and (d)
2. Let X1, X2, ..., Xn be a random sample from a Bernoulli(6) distribution with prob- ability function Note that, for a random variable X with a Bernoulli(8) distribution, E [X] var [X] = θ(1-0) θ and (a) Obtain the log-likelihood function, L(0), and hence show that the maximum likelihood estimator of θ is 7l i= I (b) Show that dE (0) (c) Calculate the expected information T(e) EI()] (d) Show...
Let X1, X2,.. .Xn be a random sample of size n from a distribution with probability density function obtain the maximum likelihood estimator of θ, θ. Use this maximum likelihood estimator to obtain an estimate of P[X > 4 when 0.50, 2 1.50, x 4.00, 4 3.00.
Let X1, X2, ..., Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) max(X1,X2, ...,Xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for e.
7. Let X1,....Xn random sample from a Bernoulli distribution with parameter p. A random variable X with Bernoulli distribution has a probability mass function (pmf) of with E(X) = p and Var(X) = p(1-p). (a) Find the method of moments (MOM) estimator of p. (b) Find a sufficient statistic for p. (Hint: Be careful when you write the joint pmf. Don't forget to sum the whole power of each term, that is, for the second term you will have (1...
Question 3: Bernoulli distribution (23/100 points) Consider a random sample X1,...,Xn from a Bernoulli distribution with unknown parameter p that describes the probability that Xi is equal to 1. That is, Bernoulli(p), i = 1, ..., n. (10) The maximum likelihood (ML) estimator for p is given by ÔML = x (11) n It holds that NPML BIN(n,p). (12) 3.a) (1 point) Give the conservative 100(1 – a)% two-sided equal-tailed confidence interval for p based on ÔML for a given...
Let X1, X2, ...,Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) = max(X1, X2, ...,xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for 0.
Q2 Suppose X1, X2, ..., Xn are i.i.d. Bernoulli random variables with probability of success p. It is known that p = ΣΧ; is an unbiased estimator for p. n 1. Find E(@2) and show that p2 is a biased estimator for p. (Hint: make use of the distribution of X, and the fact that Var(Y) = E(Y2) – E(Y)2) 2. Suggest an unbiased estimator for p2. (Hint: use the fact that the sample variance is unbiased for variance.) Xi+2...
Let X1, X2, .., Xn be a random sample from Binomial(1,p) (i.e. n Bernoulli trials). Thus, п Y- ΣΧ i=1 is Binomial (n,p). a. Show that X = ± i is an unbiased estimator of p. Р(1-р) b. Show that Var(X) X(1-X (п —. c. Show that E P(1-р) d. Find the value of c so that cX(1-X) is an unbiased estimator of Var(X): п
Let {x1, x2, ..., xn} be a sample from
Bernoulli(p). Find an unbiased estimator for p^2 .
Let {x1,x2,..., Xn} be a ..., Xn} be a sample from Bernoulli(p). Find an unbiased estimator for p?.
Let X1, X2,... X,n be a random sample of size n from a distribution with probability density function obtain the maximum likelihood estimator of λ, λ. Calculate an estimate using this maximum likelihood estimator when 1 0.10, r2 0.20, 0.30, x 0.70.