Question

1. Let X1, X2,... .Xn be a random sample of size n from a Bernoulli distribution for which p is the probability of success. W

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The beshoulli dishi bution is given b E ()P .. . E(シニ P is an unbiased eshinatu of p Thank You ahsfed, then fike mec o If you

Add a comment
Know the answer?
Add Answer to:
1. Let X1, X2,... .Xn be a random sample of size n from a Bernoulli distribution...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Let X1, X2, ..., Xn be a random sample from a Bernoulli(6) distribution with prob- ability fun...

    Advanced Statistics, I need help with (c) and (d) 2. Let X1, X2, ..., Xn be a random sample from a Bernoulli(6) distribution with prob- ability function Note that, for a random variable X with a Bernoulli(8) distribution, E [X] var [X] = θ(1-0) θ and (a) Obtain the log-likelihood function, L(0), and hence show that the maximum likelihood estimator of θ is 7l i= I (b) Show that dE (0) (c) Calculate the expected information T(e) EI()] (d) Show...

  • Let X1, X2,.. .Xn be a random sample of size n from a distribution with probability...

    Let X1, X2,.. .Xn be a random sample of size n from a distribution with probability density function obtain the maximum likelihood estimator of θ, θ. Use this maximum likelihood estimator to obtain an estimate of P[X > 4 when 0.50, 2 1.50, x 4.00, 4 3.00.

  • Let X1, X2, ..., Xn be a random sample of size n from a population that...

    Let X1, X2, ..., Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) max(X1,X2, ...,Xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for e.

  • 7. Let X1,....Xn random sample from a Bernoulli distribution with parameter p. A random variable X...

    7. Let X1,....Xn random sample from a Bernoulli distribution with parameter p. A random variable X with Bernoulli distribution has a probability mass function (pmf) of with E(X) = p and Var(X) = p(1-p). (a) Find the method of moments (MOM) estimator of p. (b) Find a sufficient statistic for p. (Hint: Be careful when you write the joint pmf. Don't forget to sum the whole power of each term, that is, for the second term you will have (1...

  • Question 3: Bernoulli distribution (23/100 points) Consider a random sample X1,...,Xn from a Bernoulli distribution with...

    Question 3: Bernoulli distribution (23/100 points) Consider a random sample X1,...,Xn from a Bernoulli distribution with unknown parameter p that describes the probability that Xi is equal to 1. That is, Bernoulli(p), i = 1, ..., n. (10) The maximum likelihood (ML) estimator for p is given by ÔML = x (11) n It holds that NPML BIN(n,p). (12) 3.a) (1 point) Give the conservative 100(1 – a)% two-sided equal-tailed confidence interval for p based on ÔML for a given...

  • Let X1, X2, ...,Xn be a random sample of size n from a population that can...

    Let X1, X2, ...,Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) = max(X1, X2, ...,xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for 0.

  • Q2 Suppose X1, X2, ..., Xn are i.i.d. Bernoulli random variables with probability of success p....

    Q2 Suppose X1, X2, ..., Xn are i.i.d. Bernoulli random variables with probability of success p. It is known that p = ΣΧ; is an unbiased estimator for p. n 1. Find E(@2) and show that p2 is a biased estimator for p. (Hint: make use of the distribution of X, and the fact that Var(Y) = E(Y2) – E(Y)2) 2. Suggest an unbiased estimator for p2. (Hint: use the fact that the sample variance is unbiased for variance.) Xi+2...

  • Let X1, X2, .., Xn be a random sample from Binomial(1,p) (i.e. n Bernoulli trials). Thus,...

    Let X1, X2, .., Xn be a random sample from Binomial(1,p) (i.e. n Bernoulli trials). Thus, п Y- ΣΧ i=1 is Binomial (n,p). a. Show that X = ± i is an unbiased estimator of p. Р(1-р) b. Show that Var(X) X(1-X (п —. c. Show that E P(1-р) d. Find the value of c so that cX(1-X) is an unbiased estimator of Var(X): п

  • Let {x1, x2, ..., xn} be a sample from Bernoulli(p). Find an unbiased estimator for p^2...

    Let {x1, x2, ..., xn} be a sample from Bernoulli(p). Find an unbiased estimator for p^2 . Let {x1,x2,..., Xn} be a ..., Xn} be a sample from Bernoulli(p). Find an unbiased estimator for p?.

  • Let X1, X2,... X,n be a random sample of size n from a distribution with probability...

    Let X1, X2,... X,n be a random sample of size n from a distribution with probability density function obtain the maximum likelihood estimator of λ, λ. Calculate an estimate using this maximum likelihood estimator when 1 0.10, r2 0.20, 0.30, x 0.70.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT