Note: according to HOMEWORKLIB RULES and regulations I have to answer only one question. That's why I am sending only one question. Sorry my friend. If you have any questions or queries in this question comment below. Thank you my friend.
1. Consider the alphabet {a,b,c}. Construct a finite automaton that accepts the language described by the...
Construct an DFA automaton that recognizes the following language of strings over the alphabet {a,b}: the set of all strings over alphabet {a,b} that contain aa, but do not contain aba.
Theory of Computation
need ASAP 2-3 hours
1. For the following grammar: a) Give an example of a string accepted by the grammar. b) Give an example of a string not accepted by the grammar. c) Describe the language produced by the grammar. 2. Using the following grammar find a derivation for the string: 0001112 A0A1le C 0C2 | D Create a grammar for the language described by the following RE: Create a grammar for the following language: For the...
Construct a Pushdown automaton that accepts the strings on alphabet {a,b,(, ) }, where parenthesis “(””)” matched in pairs. For example strings “((ab))”,”(a)b()” are in the language, while “((”,”(ab))” are not. Please determine if your PDA deterministic or nondeterministic. (With Proper Steps and explanation) PLEASE DO NOT COPY PASTE THE ANSWER FROM OTHER SOLUTIONS, AND PROVIDE PROPER EXPLANATION AND STEPS.
Build deterministic finite automata that accepts the following language over the alphabet Σ = {a, b} L= {all strings that end with b}
Construct a deterministic finite automaton accepting all and only strings in the language represented by the following regular expression: ((aa ∪ bb)c)*
1. Construct a DFSM to accept the language: L w E ab): w contains at least 3 as and no more than 3 bs) 2. Let E (acgt and let L be the language of strings consisting of repeated copies of the pairs at, ta, cg. ge. Construct both a DFSM to accept the language and a regular expression that represents the language. 3. Let ab. For a string w E , let w denote the string w with the...
Consider the language defined over the alphabet Σ (0, 1): [10] 2nin i. Show that L1 is context-free by specifying a CFG Gi for L1 ii. Convert the CFG Gi to a pushdown automaton Pv that accepts L1 by empty 12 stack iii. Give a pushdown automaton PF that accepts L by final state
consider the language L = { a^m b^n : m>2n}, give context free grammar and Nondeteministc pUSH DOWN AUTOMATON
determine if the language is regular, context-free, Turing-decidable, or undecidable. For languages that are regular, give a DFA that accepts the language, a regular expression that generates the language, and a maximal list of strings that are pairwise distinguishable with respect to the language. For languages that are context-free but not regular, prove that the language is not regular and either give a context- free grammar that generates the language or a pushdown automaton that accepts the language. You need...
Automata: solve a - e
2. (10+10+10+10+10-50 points) Agrammar is a 4-tuple G, G-ON,E,11,L$) where N is a finite set of nonterminal symbols Σ is a finite set of terminal symbols is a finite set of rules S is the starting symbol Let N- (S, T s-{a, b, c} s-> ab aT >aaTb aT-ac S is the starting symbol. (a 10 points) Prove that the given grammar G is a context sensitive grammar. (b-10 points) What is the language L-...