Question

#### Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
• ### 4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D:...

4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D: p21 ÃO = + mwf?, where m is the mass of the particle and w is the angular frequency. Now, let us perturb the oscillator with a quadratic potential. The perturbation is given by Î' = zgmw?h?, where g is a dimensionless constant and g <1. (a) Write down the eigen-energies of the unperturbed Hamiltonian. (b) In Lecture 3, we introduced the lowering (or...

• ### 8. Consider one electron in a 1D box of side L. Its wavefunction is given by...

8. Consider one electron in a 1D box of side L. Its wavefunction is given by V3 V3 2V3i where ф1(x), фг(x), and фз(x) are the first 3 eigenfunctions of the Hamiltonian, A, of a particle in a 1D box, h2 d2 a) Is Ψ(x) normalized? If it is not normalized it, normalize it! b) Is ų (x) an eigenfunction of A? If it is an eigenfunction, what is the eigenvalue?

• ### 8. Consider one electron in a 1D box of side L. Its wavefunction is given by...

8. Consider one electron in a 1D box of side L. Its wavefunction is given by из where ф1(x), фг(x), and фз(x) are the first 3 eigenfunctions of the Hamiltonian, H, of a particle in a 1D box, 2m dx2 a) Is Ψ(x) normalized? If it is not normalized it, normalize it! b) Is Ψ(x) an eigenfunction of A? If it is an eigenfunction, what is the 9. A linear polyene contains 8 -electrons, and absorbs light with412 nm. b)...

• ### Consider a perturbed particle in a box, with potential energy: for x <-L/2 2brx/L for -1/2sxSL2 for x >L/2 nd confining the zero order functions to n-1,2, 3, 4 (i.e. the lowest four Using M...

Consider a perturbed particle in a box, with potential energy: for x <-L/2 2brx/L for -1/2sxSL2 for x >L/2 nd confining the zero order functions to n-1,2, 3, 4 (i.e. the lowest four Using Matrix algebra, and confining the zero order functions to n solutions to the unperturbed particle in a box problem) determine the energy of the l (Hint: In diagonalizing a matrix, you may reorder the quantum numbers in any way you like). d) Consider a perturbed particle...

• ### Please finish this question with step-by-step details, thx! Consider one electron in a 1D box of...

Please finish this question with step-by-step details, thx! Consider one electron in a 1D box of side L. Its wavefunction is given by V3 /3 A. where φ1(x),P2(x), and φ3(x) are the first 3 eigenfunctions of the Hamiltonian, H, of a particle in a 1D box, h2 d2 2mdx2 Az- a) ls (x) normalized? If it is not normalized it, normalize it! b) is Ψ(x) an eigenfunction of H? If it is an eigenfunction, what is the eigenvalue?

• ### 4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries...

4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries at x--a and x-a. We introduce the following δ-function perturbation at V'(x) 00(z). a. Compute the first-order corrections to the energies of the particle induced by the perturbation b. Recall that you solved this problem exactly in problem set 4 (Griffiths 2.43). Compare your perturbation theory result to the exact solution

• ### Particle with a speed bump Consider our old friend the 1D particle in the box, except...

Particle with a speed bump Consider our old friend the 1D particle in the box, except now with a speed bump in the box so the potential now is given by L and L < x < L 0, Vo 0 x V (x) otherwise (a) Calculate the first order correction to the ground state (n = 1) and first excited state (n = 2) energies (b) Calculate the first order correction to the ground state wave function in terms...

• ### 3. Consider a free particle on a circle. That is, consider V(z) = 0 and wave...

3. Consider a free particle on a circle. That is, consider V(z) = 0 and wave functions Ψ(z, t) which are periodic functions of z: Ψ(z,t) = Ψ(z + L, t). a) Solve the Time-Independent Schroedinger equation. For each allowed energy, En, you will find two solutions, (s). Why does this not contradict the theorem that we proved in class about the non-degeneracy of the solutions to the TISE in one dimension? b) Start with the initial condition Ψ(z,0) sin2(nz/L)....

• ### Consider a particle confined in two-dimensional box with infinite walls at x 0, L;y 0, L. the dou...

quantum mechanics Consider a particle confined in two-dimensional box with infinite walls at x 0, L;y 0, L. the doubly degenerate eigenstates are: Ιψη, p (x,y))-2sinnLx sinpry for 0 < x, y < L elsewhere and their eigenenergies are: n + p, n, p where n, p-1,2, 3,.... Calculate the energy of the first excited state up to the first order in perturbation theory due to the addition of: 2 2 Consider a particle confined in two-dimensional box with infinite...

• ### 17.1) Show that the retarded field propagator for a free particle in momentum space and the time ...

additional info 17.1) Show that the retarded field propagator for a free particle in momentum space and the time domain: given by θ(te-ty)e-i(Epte-Eqty's(3) (p-q) 17.1 The field propagntor in outline e field propagator in outline 155 he field propagator involves a simple thought experi- our interacting system in its ground state, which we interactin ent. We start with denote w 12). The thought experiment works as follows: we introdu extra particle of our choice the system. point ( in anni...