3. Given that yı(t) = t, y(t) = t, and yz(t) = are solutions to the...
Note that yı(t) = Vt and yz(t) = t-1 are solutions of the linear homogeneous differential equation 2t’y" + 3ty' – y = 0. Use variation of parameters to find the general solution of the nonhomogeneous differential equation 2t’y" + 3ty' - y = 4t² + 4t. 8 o* Civt + Cat-1 + + 35 OB. 4 Civt + Cat-1+ t + 2 t2 9 of Civt + Cat-1 + t2 + 2t 9 00 Civt + Cut-+ 4 OE...
2. Consider the differential equation ty" – (t+1)y' +y = 2t2 t>0. (a) Check that yı = et and y2 = t+1 are a fundamental set of solutions to the associated homogeneous equation. (b) Find a particular solution using variation of parameters.
3. Consider the differential equation ty" - (t+1)y + y = t?e?', t>0. (a) Find a value ofr for which y = et is a solution to the corresponding homogeneous differential equation. (b) Use Reduction of Order to find a second, linearly independent, solution to the correspond- ing homogeneous differential equation. (c) Use Variation of Parameters to find a particular solution to the nonhomogeneous differ- ential equation and then give the general solution to the differential equation.
QUESTION 10 Note that yı(t) Vt and y(t) =t-1 are solutions of the linear homogeneous differential equation 2t²Y" + 3ty' – y=0. Use variation of parameters to find the general solution of the nonhomogeneous differential equation 2t’y" + 3ty' - y = 4t? + 4t. 8 2 OA Civt + Cat-1 + 74 35 oCivt+Cet-1 + 4 9 t2 + 2t OC Civt + Cat-1 + 4 9 t2 + 2 5 2 OD. 8 Civt + Cat-1 + t2...
(a) Given yı = et is a solution, find another linearly independent solution to the differential equation. ty" – (t + 1)y' + y = 0 (b) Use variation of parameters to find a particular solution to ty" – (t+1)y' +y=ť?,
Find the solution y of the initial value problem 3"(t) = 2 (3(t). y(1) = 0, y' (1) = 1. +3 g(t) = M Solve the initial value problem g(t) g” (t) + 50g (+)? = 0, y(0) = 1, y'(0) = 7. g(t) = Σ Use the reduction order method to find a second solution ya to the differential equation ty" + 12ty' +28 y = 0. knowing that the function yı(t) = + 4 is solution to that...
Please show how to solve. Correct answer shown.
Use variation of parameters to find a general solution to the differential equation given that the functions y, and y2 are linearly independent solutions to the corresponding homogeneous equation for t>0. - 2t + ty +(2t - 1)x - 2y =ềe -2t, Y1 = 2t - 1, y2 = e - A general solution is y(t) = X X That's incorrect. 1 Correct answer: C1(2t - 1) + c2 e - 2t...
Chapter 4, Section 4.7, QUestion 23 Given that the given functions yı and y2 satisfy the corresponding homogeneous equation; find a particular solution of the given nonhomogeneous equation ty (3t1y +3y = 8172e6 > 0; y1 (t) = 3t , y2 (t) = e3 The particular solution is Y(t) =
Chapter 4, Section 4.7, QUestion 23 Given that the given functions yı and y2 satisfy the corresponding homogeneous equation; find a particular solution of the given nonhomogeneous equation ty (3t1y...
need help solving
Homework: 4.6 Variation of Parameters Save Score: 0 of 3 pts 3 of 4 (4 complete) HW Score: 70%. 7 of 10 pts X 4.6.23 Question Help Use variation of parameters to find a general solution to the differential equation given that the functions, and y, are linearly independent solutions to the corresponding homogeneous equation fort0 ty' - (+1) +y3+ y el Y=t+1 A general solution is yt)= Enter your answer in the answer box and then...
Consider the differential equation: -9ty" – 6t(t – 3)y' + 6(t – 3)y=0, t> 0. a. Given that yı(t) = 3t is a solution, apply the reduction of order method to find another solution y2 for which yı and y2 form a fundamental solution set. i. Starting with yi, solve for w in yıw' + (2y + p(t)yı)w = 0 so that w(1) = -3. w(t) = ii. Now solve for u where u = w so that u(1) =...