(1 point) Let A-0 -2 3 Find a basis of nullspace(A). Answer: To enter a basis into WeBWorK, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is 21 , then you would enter [1,2,3],11,1,1] into the answer blank.
(1 point) Find an orthonormal basis of the plane X1 + 4x2 – x3 = 0. Answer: To enter a basis into WebWork, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is 2 then you would enter [1,2,3], 3 [1,1,1) into the answer blank.
(1 point) Let L be the linear operator in R? defined by L(x) = (4x1 – 2x2, -6x1 + 3x2) Find bases of the kernel and image of L. 00 Kernel: * Image: [-2,3] To enter a basis into WebWork, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is 1 2,1l/, then you would enter [1,2,3], 31 [1,1,1) into the answer blank.
Section 3.4 Basis and Dimension: Problem 4 Previous Problem Problem List Next Problem (1 point) Find a basis of the subspace of R* defined by the equation - 2:04 +32 +673 +624 = 0 Answer To enter a basis into WebWork, place the entries of each vector inside of brackets and enter a list of these vectors, separated by instance, if your basis is 2 . 1 , then you would enter [1,2,3],[1,1,1) into the answer blank.
[1 -1 0 0 -2 0] 1 4 -4 0 0 -8 0 (1 point) Let A = 10 0 -1 2 -3 3 . Find a basis for the row space of A, a basis for the column space of A, a basis for the null space 0 0 0 -3 0 -2 Lo 0 1 0 3 3] [1 -1 0 0 -2 01 0 0 1 0 3 0 of A, the rank of A, and the...
T0 0 0 ] (1 point) The matrix A = -5 5 10 has two real eigenvalues, one of multiplicity 1 and one of multiplicity 2. Find the eigenvalues and a basis of [ 5 -5 -10] each eigenspace. 11 = has multiplicity 1, with a basis of 22 = !! has multiplicity 2, with a basis of 010 To enter a basis into WebWork, place the entries of each vector inside of brackets, and enter a list of these...
Please answer the following. Thank you. (1 point) Let A--5-5-5 5 |. Find basis for the kernal and image of the linear transformation T defined by T(刃 L-5-1 5, Kernel basis: Image basis: To enter a basis into WeBWorK, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is2 1 I&, then you would enter [1,2,3],[1,1,1] into the answer blank. 3] L1 (1 point) Let...
Find a basis of the subspace of R4 that consists of all vectors perpendicular to both Problem 11. (12 points) Find a basis of the subspace of R4 that consists of all vectors perpendicular to both Basis: 111 To enter a basis into WebWork, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is was to me, you are » {]J (1) mar yavros en...
Will rate once all is completed. 1) 2) 3) 4) (12 points) Find a basis of the subspace of R that consists of all vectors perpendicular to both El- 1 1 0 and 7 Basis: , then you would enter [1,2,3],[1,1,1] into the answer To enter a basis into WeBWork, place the entries. each vector inside of brackets, and enter a list these vectors, separated by commas. For instance if vour basis is 31 2 and u (12 points) Let...
(3 points) Let A= [ 1 -2 (1 2 -4 2 0 -4 3 -3 11 2 10 0 -8 (a) Find a basis for the column space of A. Answer: { Enter your answer as a vector or a list of vectors in parentheses separated by commas. For example (1,2,3,4),(5,6,7,8) (b) What is the dimension of the row space of A? (c) What is the dimension of the solution space of A? where a € R. Find the value...