1) We have ,
; From standard normal distribution table
2) We have ,
...............(I)
From standard normal distribution table ,
...............(II)
From (I) and (II) , we get ,
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a...
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0.244°C and 0.251°C. P(0.244<Z<0.251)
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a mean of O°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading greater than-2.377°C. P(Z > - 2.377) The phoDysical fitness of an athlete is often measured by how much oxygen the athlete takes in (which is recorded in milliliters per kilogram, ml/kg). The mean maximum oxygen uptake for elite athletes has...
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than -1.397°C.
1. Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than 1.089°C. P(Z<1.089)=P(Z<1.089)= (Round answer to four decimal places.) 2. Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is...
1. Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than -0.864°C. P(Z<−0.864)= 2. Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find...
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than -2.651°C. P(Z<−2.651)= (Round to 4 decimal places)
answer please
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than-1.328°C. P(Z < - 1.328) =
answer please
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than 0.02°C. P(Z < 0.02) =
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0°C and 1.059°C. P(0 < < < 1.059)
Steps and answer please
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading greater than 1.811°C. P(Z > 1.811) =