Homework Help Question & Answers

Calorimeter Chemistry Question

A calorimeter contains 950.0 g water that changes temperature by 11.3 °C when 1.00 g of diesel is burned. What is the heat of combustion of 1.00 g of diesel, in kilojoules?

The specific heat of water is 4.18 J/(g·°C). Remember that combustion is an exothermic chemical process. Please make sure that the sign of your answer indicates this. Round your answer to the tenths place.


1 0
Add a comment
Answer #1

Sign Up to Unlock the answer FREE

Already have an account? Log in

Answer: -44.8 kJ


-4.18 J/(g·°C) * 950.0g = 3,971 J/°C

-3,971 J/°C * 11.3 °C = 44,872.3 J

-44,872.3 J / 1,000 = -44.8 kJ

answered by: Guest
Add a comment
Know the answer?
Add Answer to:
Calorimeter Chemistry Question
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coin

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • When 0.187 g of benzene, C6H6, is burned in a bomb calorimeter, the temperature of both the water and the calorimeter r...

    When 0.187 g of benzene, C6H6, is burned in a bomb calorimeter, the temperature of both the water and the calorimeter rises by 4.53 ∘C. Assuming that the bath contains 250.0 g of water and that the heat capacity for the calorimeter is 525 J/∘C , calculate the combustion energy (ΔE) for benzene in kilojoules per gram.

  • When 0.187 g of toluene, C7H8, is burned in a bomb calorimeter, the temperature of both the water and the calorimeter r...

    When 0.187 g of toluene, C7H8, is burned in a bomb calorimeter, the temperature of both the water and the calorimeter rises by 4.83 ∘C. Assuming that the bath contains 250.0 g of water and that the heat capacity for the calorimeter is 525 J/∘C, calculate the combustion energy (ΔE) for toluene in kilojoules per gram.

  • Calorimeter question

    A calorimeter contains 24.0 of water at15.0. When2.20 of (a substance with a molar mass of 69.0 ) is added, it dissolves via the reactionand the temperature of the solution increases to 26.0.Calculate the enthalpy change, , for thisreaction per mole of .Assume that the specific heat and density of the resulting solution are equal to those of water [4.18 and 1.00] and that no heat is lost to the calorimeter itself, norto the surroundings.Express the change in enthalpy in...

  • Assuming that the specific heat of the solution is 4.18 J/(g⋅∘C) and that the calorimeter itself...

    Assuming that the specific heat of the solution is 4.18 J/(g⋅∘C) and that the calorimeter itself absorbs a negligible amount of heat, calculate ΔH in kilojoules for the reaction. Part A Assuming that the specific heat of the solution is 4.18 J/(g . C) and that the calorimeter itself absorbs a negligible amount of heat, calculate AH in kilojoules for the reaction K2O(8)+H20()-2KOH(aq) ανα ΑΣφ ? ΔΗ - kJ Request Answer Submit Provide Feedback Next> Constants Periodic Tab When 1.045...

  • Part A: A calorimeter contains 26.0 mL of water at 13.0 ∘C . When 2.10 g...

    Part A: A calorimeter contains 26.0 mL of water at 13.0 ∘C . When 2.10 g of X (a substance with a molar mass of 49.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...

  • ReviewI Constants1 Periodic Table Part A A calorimeter is an insulated device in which a chemical reaction is contained By measuring the temperature change. ΔΤ, we can calculate the heat released or...

    ReviewI Constants1 Periodic Table Part A A calorimeter is an insulated device in which a chemical reaction is contained By measuring the temperature change. ΔΤ, we can calculate the heat released or absorbed during the reaction using the following equation: A calorimeter contains 35.0 mL of water at 13.5 °C . when 1.20 g of X (a substance with a molar mass of 61.0 g/mol) is added, it dissolves via the reaction X+20)-X(ag) and the temperature of the solution increases...

  • A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X...

    A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X (a substance with a molar mass of 77.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X...

    A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X (a substance with a molar mass of 77.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 35.0 mL of water at 12.0 ∘C . When 2.30 g of X...

    A calorimeter contains 35.0 mL of water at 12.0 ∘C . When 2.30 g of X (a substance with a molar mass of 70.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 19.0 mL of water at 11.5 ∘C . When 2.50 g of X...

    A calorimeter contains 19.0 mL of water at 11.5 ∘C . When 2.50 g of X (a substance with a molar mass of 63.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
Active Questions
ADVERTISEMENT