Question

A solution is made by dissolving 0.585 mol of nonelectrolyte solute in 877 g of benzene....

A solution is made by dissolving 0.585 mol of nonelectrolyte solute in 877 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants can be found in the table of colligative constants.

Constants for freezing-point depression and boiling-point elevation calculations at 1 atm:

Solvent Formula Kf value*

(°C/m)

Normal freezing

point (°C)

Kb value

(°C/m)

Normal boiling

point (°C)

water H2O 1.86 0.00 0.512 100.00
benzene C6H6 5.12 5.49 2.53 80.1
cyclohexane C6H12 20.8 6.59 2.92 80.7
ethanol C2H6O 1.99 –117.3 1.22 78.4
carbon
tetrachloride
CCl4 29.8 –22.9 5.03 76.8
camphor C10H16O 37.8 176


*When using positive Kf values, assume that ΔTf is the absolute value of the change in temperature. If you would prefer to define ΔTf as "final minus initial" temperature, then ΔTf will be negative and so you must use negative Kf values. Either way, the freezing point of the solution should be lower than that of the pure solvent.

Tf= ∘C

Tb=   ∘C

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Tf = 2.075°C

T​​​​​​b = 81.79°C

Add a comment
Know the answer?
Add Answer to:
A solution is made by dissolving 0.585 mol of nonelectrolyte solute in 877 g of benzene....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A solution is made by dissolving 0.749 mol of nonelectrolyte solute in 861 g of benzene....

    A solution is made by dissolving 0.749 mol of nonelectrolyte solute in 861 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here. Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride   CCl4 29.8 –22.9 5.03 76.8...

  • A solution is made by dissolving 0.592 mol of nonelectrolyte solute in 767 g of benzene....

    A solution is made by dissolving 0.592 mol of nonelectrolyte solute in 767 g of benzene. Calculate the freezing point, Te, and boiling point, Tb, of the solution. Constants can be found in the table of colligative constants. T = Colligative Constants Constants for freezing-point depression and boiling-point elevation calculations at 1 atm: Solvent Formula Kf value* Normal freezing Kb value Normal boiling (°C/m) point (°C) (°C/m) point (°C) water H20 1.86 0.00 0.512 100.00 benzene 5.12 5.49 2.53 80.1...

  • A solution is made by dissolving 58.125g of sample of an unknown, nonelectrolyte compound in water....

    A solution is made by dissolving 58.125g of sample of an unknown, nonelectrolyte compound in water. The mass of the solution is exactly 750.0g. The boiling point of this solution is 100.220 ∘C. What is the molecular weight of the unknown compound? Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3...

  • Assuming 100% dissociation, calculate the freezing point and boiling point of 2.11 m Na2SO4(aq). Constants may...

    Assuming 100% dissociation, calculate the freezing point and boiling point of 2.11 m Na2SO4(aq). Constants may be found here. Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride   CCl4 29.8 –22.9 5.03 76.8 camphor   C10H16O 37.8 176

  • A solution is made by dissolving 0.689 mol of nonelectrolyte solute in 905 g of benzene....

    A solution is made by dissolving 0.689 mol of nonelectrolyte solute in 905 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants can be found in the table of colligative constants.

  • A solution is made by dissolving 0.501 mol0.501 mol of nonelectrolyte solute in 883 g883 g...

    A solution is made by dissolving 0.501 mol0.501 mol of nonelectrolyte solute in 883 g883 g of benzene. Calculate the freezing point, Tf,Tf, and boiling point, Tb,Tb, of the solution. Constants can be found in the table of colligative constants.

  • At- 15.0 °C (a common temperature for household freezers), what is the maximum mass of sucrose...

    At- 15.0 °C (a common temperature for household freezers), what is the maximum mass of sucrose (C12H22011) you can add to 2.00 kg of pure water and still have the solution freeze? Assume that sucrose is a molecular solid and does not ionize when it dissolves in water. Kf values are given here Number Constants for freezing-point depression and boiling-point elevation calculations at 1 atm: Solvent Formula Kf value*Normal freezing Kb value Normal boiling point (oc 0.00 5.49 6.59 °C/m...

  • At -10.5°C, a common temperature for household freezers, what is the maximum mass of aspartame (C14H;8N2O3)...

    At -10.5°C, a common temperature for household freezers, what is the maximum mass of aspartame (C14H;8N2O3) you can add to 2.00 kg of pure water and still have the solution freeze? Assume that aspartame is a molecular solid and does not ionize when it dissolves in water. Consult the table of K, values. mass of aspartame: Colligative Constants Constants for freezing-point depression and boiling-point elevation calculations at 1 atm: Solvent Formula Kf value* Normal freezing Ko value Normal bolling (°C/m)...

  • At -18.6 °C, a common temperature for household freezers, what is the maximum mass of sucralose...

    At -18.6 °C, a common temperature for household freezers, what is the maximum mass of sucralose (C12H19C1308) in grams you can add to 2.00 kg of pure water and still have the solution freeze? Assume that sucralose is a molecular solid and does not ionize when it dissolves in water. Consult the table of Kf values. Answer: Solvent water benzene cyclohexane ethanol carbon tetrachloride camphor Formula Kf value* Normal freezing Kb value Normal boiling (°C/m) point (°C) (°C/m) point (°C)...

  • A solution is made by dissolving 0.655 mol of nonelectrolyte solute in 765 g of benzene....

    A solution is made by dissolving 0.655 mol of nonelectrolyte solute in 765 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here. Number Number

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT