What is the derivative of the step response (the output for input of u(t)? Demonstrate that it is the impulse response for a linear shift-invariant response by differentiating the convolution integral.
What is the derivative of the step response (the output for input of u(t)? Demonstrate that...
1. Evaluate and sketch the convolution integral (the output y(t)) for a system with input x(t) and impulse response h(t), where x(t) = u(1-2) and h(t)= "u(t) u(t) is the unit step function. Please show clearly all the necessary steps of convolution. Determine the values of the output y(t) at 1 = 0,1 = 3,1 = 00. (3 pts)
4. A linear time invariant system has the following impulse response: h(t) =2e-at u(t) Use convolution to find the response y(t) to the following input: x(t) = u(t)-u(t-4) Sketch y(t) for the case when a = 1
For a continuous time linear time-invariant system, the input-output relation is the following (x(t) the input, y(t) the output): , where h(t) is the impulse response function of the system. Please explain why a signal like e/“* is always an eigenvector of this linear map for any w. Also, if ¥(w),X(w),and H(w) are the Fourier transforms of y(t),x(t),and h(t), respectively. Please derive in detail the relation between Y(w),X(w),and H(w), which means to reproduce the proof of the basic convolution property...
4. Let h(t), (t), and y(t), for -oo < oo, be the impulse response function, the input, and the output of a linear time-invariant system, respectively. Give the following spectra: Input magnitude spectrum: Input phase spectrum: ex(2) T/2 Output magnitude spectrum: tY() Output phase spectrum: ey (2) / 2 Find H() from the above spectra and from the fact that H() 0 for not belonging to the interval (-2,2). Find the impulse response function h(t) from H() found above. Is...
The impulse response h(t) of a linear time-invariant system is 2*pi[(t-2)/2]. Find and plot the output when the system is driven by an input signal that is identical to the impulse response.
QUESTION 2 (20 MARKS) (a) A continuous time signal x(t) = 3e2tu(-t) is an input to a Linear Time Invariant system of which the impulse response h(t) is shown as h(t) = { .. 12, -osts-2 elsewhere Compute the output y(t) of the system above using convolution in time domain for all values of time t. [8 marks) (b) The impulse response h[n] of an LTI system is given as a[n] = 4(0.6)”u[n] Determine if the system is stable. [3...
Find the zero-state response of the linear system with transfer function with an > 0 and 0 <くく1, when the input u(t) is the unit step, that is, u(t)-1(t), for 12 o, using both 1) the transfer function approach and 2) the convolution approach Find the zero-state response of the linear system with transfer function with an > 0 and 0
2.10. Window/modulator Consider the system where for an input x(t) the output is y(t) = x(oft) for some function f(t). (a) Letf(t)=u(t)-11(t-10). Determine whether the system with input x(t) and output y(t)is linear, time invariant, and causal, Suppose x(t) = 4 cos(T/2), and f(t)=cos(67t/7) periodic? What frequencies are present in the output? Is this system linear? Is it time invariant? Explain. (b) and both are periodic. Is the output y(t) also (c) Let f(t) = u(t)-u (t-2) and the input...
Question 1: (2 marks) Find the zero-input response yz(t) for a linear time-invariant (LTI) system described by the following differential equation: j(t) + 5y(t) + 6y(t) = f(t) + 2x(t) with the initial conditions yz (0) = 0 and jz (0) = 10. Question 2: (4 marks) The impulse response of an LTI system is given by: h(t) = 3e?'u(t) Find the zero-state response yzs (t) of the system for each the following input signals using convolution with direct integration....
A system has an input, x(t) and an impulse response, h(t). Using the convolution integral, find and plot the system output, y(t), for the combination given below. x(t) is P3.2(e) and h(t) is P3.2(f). 1/2 cycle of 2 cos at -2. (e)