An economy (country A) has a Cobb-Douglas production function: Y = K^0.4 (LE) ^0.6
The economy has a saving rate of 48 percent, a depreciation rate of 2 percent, a rate of population growth of 1 percent, and a rate of labor-augmenting technological change of 3 percent.
Assume there is a second economy (country B) with everything identical to country A except for the rate of population growth, which is 2 percent.
Assume both countries start a k = 0, which country grows more in • (2 points) the short run (before steady state is reached), as given by the rate of growth of output per worker? • (2 points) the long run (once steady state is reached) in per-worker terms, as given by the rate of growth of output per worker? • (2 points) the long run (once steady state is reached) in aggregate terms, as given by the rate of growth of aggregate output?
An economy (country A) has a Cobb-Douglas production function: Y = K^0.4 (LE) ^0.6 The economy...
An economy (country A) has a Cobb-Douglas production function: Y = K0.4 (LE) 0.6 The economy has a saving rate of 48 percent, a depreciation rate of 2 percent, a rate of population growth of 1 percent, and a rate of labor-augmenting technological change of 3 percent. Assume there is a second economy (country B) with everything identical to country A except for the rate of population growth, which is 2 percent. Assume there is a third economy (country C)...
An economy (country A) has a Cobb-Douglas production function: Y = K0.4 (LE) 0.6 The economy has a saving rate of 48 percent, a depreciation rate of 2 percent, a rate of population growth of 1 percent, and a rate of labor-augmenting technological change of 3 percent. Assume there is a second economy (country B) with everything identical to country A except for the rate of population growth, which is 2 percent. Answer questions 4 and 5 above for country...
An economy has a Cobb-Douglas production function: Y = K"(LE)!-a The economy has a capital share of 0.25, a saving rate of 40 percent, a depreciation rate of 3.00 percent, a rate of population growth of 0.75 percent, and a rate of labor- augmenting technological change of 2.0 percent. It is in steady state. b. Solve for capital per effective worker (k*), output per effective worker (y*), and the marginal product of capital.
An economy has a Cobb-Douglas production function: Y = K°(LE)1-a The economy has a capital share of 0.25, a saving rate of 43 percent, a depreciation rate of 3.00 percent, a rate of population growth of 4.25 percent, and a rate of labor-augmenting technological change of 3.5 percent. It is in steady state. b. Solve for capital per effective worker (k*), output per effective worker (y*), and the marginal product of capital. k* = 2.83 y* * = 1.30 =...
An economy has a Cobb–Douglas production function: Y=Kα(LE)1−αY=Kα(LE)1−α The economy has a capital share of 0.30, a saving rate of 42 percent, a depreciation rate of 5.00 percent, a rate of population growth of 2.50 percent, and a rate of labor-augmenting technological change of 4.0 percent. It is in steady state. . At what rates do total output and output per worker grow? Total output growth rate: % Output per worker growth rate: %
Economic Growth II — Work It Out Question 1 An economy has a Cobb-Douglas production function: Y = K (LE)-a The economy has a capital share of 0.25, a saving rate of 47 percent, a depreciation rate of 4.00 percent, a rate of population growth of 2.25 percent, and a rate of labor-augmenting technological change of 2.5 percent. It is in steady state. a. At what rates do total output and output per worker grow? Total output growth rate: %...
Economic Growth II - Work It Out Question 1 An economy has a Cobb Douglas production function: Y = K (LE). The economy has a capital share of 0.20, a saving rate of 50 percent, a depreciation rate of 3.50 percent, a rate of population growth of 4.00 percent, and a rate of labor augmenting technological change of 2.5 percent. It is in steady state. a. At what rates do total output and output per worker grow? Total output growth...
An economy has a Cobb-Douglas production function: Y = Ka(LE)(1-a). The economy has a capital share of a third (means a= 1/3), a saving rate of 24 percent, a depreciation rate of 3 percent, and a rate of labor-augmenting technological change of 1 percent. It is in steady state. a. At what rate does total output, output per worker, and output per effective worker grow? b. Solve for steady state capital per effective worker, output per effective worker, consumption per...
5. Calibrated Cobb-Douglas Growth Model Assume an economy has the following production function: Y = F(K, AL) = K 0.4 (AL)0.6. (a) Write down the production function per effective worker. (20 marks) (b) For this economy, the savings rate is 20%, the depreciation rate is 10% per year, the population growth rate is 2% per year, and the technology growth rate is 3% per year. Calculate the steady-state capital stock per effective worker, output per effective worker, and consumption per...
Problem 3. Consider the Solow model where the production function is Cobb-Douglas and takes this form, Y = Ka (LE)1-a, where 0 < α < 1. The savings rate s s, the depreciation rate isỗ, and the growth rate of E is g and the growth rate of L is n. Denote y E and LE 1. The economy is at the steady state. Report the steady-state growth rates of y, k, Y, K, L' K' ?, an 2. Assume...