Suppose that x has a distribution with μ = 23 and σ = 7. If a random sample is taken of size n = 39, find .
Suppose x has a distribution with μ = 21 and σ = 17. (a) If a random sample of size n = 36 is drawn, find μx, σx and P(21 ≤ x ≤ 23). μx = σx = P(21 ≤ x ≤ 23) = (b) If a random sample of size n = 62 is drawn, find μx, σx and P(21 ≤ x ≤ 23). μx = σx = P(21 ≤ x ≤ 23) =
Suppose x has a distribution with μ = 10 and σ = 7. (a) If a random sample of size n = 40 is drawn, find μx, σ x and P(10 ≤ x ≤ 12). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(10 ≤ x ≤ 12) = (b) If a random sample of size n = 63 is drawn, find μx, σ x and P(10 ≤ x ≤ 12)....
Suppose x has a distribution with μ = 35 and σ = 18. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? Yes, the x distribution is normal with mean μ x = 35 and σ x = 4.5. No, the sample size is too small. Yes, the x distribution is normal with mean μ x = 35 and σ x = 18. Yes, the x distribution...
Suppose x has a distribution with μ = 32 and σ = 17. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? No, the sample size is too small. Yes, the x distribution is normal with mean μ x = 32 and σ x = 17. Yes, the x distribution is normal with mean μ x = 32 and σ x = 1.1. Yes, the x distribution...
Suppose x has a distribution with μ = 13 and σ = 6. (a) If a random sample of size n = 35 is drawn, find μx, σ x and P(13 ≤ x ≤ 15). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(13 ≤ x ≤ 15) = (b) If a random sample of size n = 61 is drawn, find μx, σ x and P(13 ≤ x ≤ 15)....
Suppose x has a distribution with μ = 13 and σ = 7. (a) If a random sample of size n = 43 is drawn, find μx, σx and P(13 ≤ x ≤ 15). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(13 ≤ x ≤ 15) = (b) If a random sample of size n = 58 is drawn, find μx, σx and P(13 ≤ x ≤ 15). (Round σx...
Suppose x has a distribution with μ = 10 and σ = 2. (a) If a random sample of size n = 39 is drawn, find μx, σ x and P(10 ≤ x ≤ 12). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(10 ≤ x ≤ 12) = (b) If a random sample of size n = 56 is drawn, find μx, σ x and P(10 ≤ x ≤...
Suppose x has a distribution with μ = 10 and σ = 9. (a) If a random sample of size n = 35 is drawn, find μx, σ x and P(10 ≤ x ≤ 12). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(10 ≤ x ≤ 12) = (b) If a random sample of size n = 60 is drawn, find μx, σ x and P(10 ≤ x ≤...
Suppose x has a distribution with μ = 20 and σ = 12. (a) If a random sample of size n = 47 is drawn, find μx, σ x and P(20 ≤ x ≤ 22). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(20 ≤ x ≤ 22) = (b) If a random sample of size n = 60 is drawn, find μx, σ x and P(20 ≤ x ≤...
Suppose x has a distribution with μ = 27 and σ = 19. (a) If a random sample of size n = 42 is drawn, find μx, σx and P(27 ≤ x ≤ 29). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(27 ≤ x ≤ 29) = (b) If a random sample of size n = 62 is drawn, find μx, σx and P(27 ≤ x ≤ 29). (Round σx...