4. 3D Infinite Square Well Perturbation (20 pts) Consider the three-dimensional infinite cubic well: otherwise The stationary states are where n, ny, and n, are integers. The corresponding allowed en...
Find parts a and b. Consider the three-dimensional cubic well V = {(0 if 0<x<a, 0<y<a, 0<z<a), (infinity otherwise). The stationary states are psi^(0) (x, Y, z) = (2/a)^(3/2)sin(npix/a)sin(npiy/a) sin(npiz/a), where nx, ny , and nz are integers. The corresponding allowed energies are E^0 = (((pi^2)(hbar^2))/2m(a^2))(nx^2+ny^2+nz^2). Now let us introduce perturbation V={(V0 if 0<x<(a/2), 0<y<(a/2)), (0 otherwise) a) Find the first-order correction to the ground state energy. b) Find the first-order correction to the first excited state. 1. Consider the...
Q1) Consider 2.dimensional infinite "well" with the potential otherwise The stationary states are ny = (a) sin ( x) sin (y,) The corresponding energies are n) , 123 Note that the ground state, ?11 is nondegenerate with the energy E00)-E1)-' r' Now introduce the perturbation, given by the shaded region in the figure ma AH,-{Vo, if 0<x otherwise y<a/2 (a) What is the energy of the 1.st excited state of the unperturbed system? What is its degree of degeneracy,v? (b)...
4. (20 points) Infinite Wells in Three Dimensions a) Consider a three dimensional in- finite rectangular well for which L -L, Ly-2L, ald L2-3L. In terms of quantum numbers (e.g. nz, ny, and n.), M. L, and ћ. write down an expression for the energies of all quantum states. (b) Find the energies of the ground state and the first three lowest lying energies. As in part (b), for each energy level, give the quantum numbers n, ny, n and...
4. (20 points). δ. unction perturbation. Consider a particle in a one-dimensional infinite square well with boundaries at -a and-a. We introduce the following 6-function perturbation at x=0: a. Compute the first-order corrections to the energies of the particle induced by the ν' perturbation b. Recall that you solved this problem exactly in problem set 4 (Griffiths 2.43). Compare your perturbation theory result to the exact solution.
4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries at x--a and x-a. We introduce the following δ-function perturbation at V'(x) 00(z). a. Compute the first-order corrections to the energies of the particle induced by the perturbation b. Recall that you solved this problem exactly in problem set 4 (Griffiths 2.43). Compare your perturbation theory result to the exact solution
Quantum Mechanics Problem 1. (25) Consider an infinite potential well with the following shape: 0 a/4 3al4 a h2 where 4 Using the ground state wavefunction of the original infinite potential well as a trial function, 2πχ trial = 1-sin- find the approximation of the ground state energy for this system with the variational method. (Note, this question is simplified by considering the two components of the Hamiltonian, and V, on their own) b) If we had used the 1st...
Questions 1 - 5 deal with a particle in a one-dimensional infinite square well of width a where 0, 0 SX Sa V(x) = 100, Otherwise. The stationary states are Pn(x) = sin(**) with energies En = "forn = 1,2,3.. Question 1 (14 pts) Which of the following is correct? A. The Hilbert space for this system is one dimensional. B. The energy eigenstates of the system form a ID Hilbert space. C. Both A and B are correct. D....
Griffiths Introductory to Quantum Mechanics (3rd Edition): Problem 7.9 Problem 7.9 Consider a particle of mass m that is free to move in a one- dimensional region of length L that closes on itself (for instance, a bea that slides frictionlessly on a circular wire of circumference L, as Problem 2.46) (a) Show that the stationary states can be written in the form 2π inx/L where n 0, t l, 2, , and the allowed energies are In Notice that-with...
1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a) What are the energy eigenfunctions n of the Hamiltonian for a single particle bound in this potential? You may write your answer in piece-wise form, with an arbitrary normalization. b) Derive the characteristic equation that the energy eigenvalues E, must satisfy in order to satisfy the eigenvalue equation Hy,-EnUn for eigen function Un c) Write a computer program1 to find the eigenvalues E, for...