Question 7 5 pts each Write iterated integrals for each of the given calu lations. Do not evaluate. (A) The integral of f(x, )212y over the domain D: 2 y 20. (B) The integral of f(x, y, z) = 12x...
solutions are labeled a to c at the bottom. can you explain what the r stands for. I'm assuming x2 + y2 Write iterated integrals for each of the given caleu- Question 7 (5 pts each] lations. Do not evaluate. (A) The integral of f(x,y) 32 + 12y over the domain D: +20 (B) The integral of f(x, y,) first octant and below the graph z 8-y 2 (C) The mass of an object occupying the region bounded between the...
This are two parts of the same question, but I don't know how to work on this question. So, any help would be much appreciated. (4pts) Write ||| f(x, y,z)dV as iterated integrals if S is the solid bounded by S: x2 +y2+2=2and z = x2 + y2 a. (4pts) Sketch the region S in R3 over which the integral is computed. 3π/2 3 (4pts) Write ||| f(x, y,z)dV as iterated integrals if S is the solid bounded by S:...
4. (5 points) Express the integral JI f(x, y, z) dV as an iterated integral in 6 different ways, where E is the solid region bounded by y2 + z-9. x--2, and x-2. 4. (5 points) Express the integral JI f(x, y, z) dV as an iterated integral in 6 different ways, where E is the solid region bounded by y2 + z-9. x--2, and x-2.
(16) (7 points) Set up an iterated integral of f (x, y, z) = x2 + y2 + z2 over the solid region shown below. Use the spherical coordinates. N 1 y - One-eighth sphere
5. Express the triple integral | f(x,y,z)dV as an iterated integral in cartesian coordinates. E is the region inside the sphere x2 + y2 + z2 = 2 and above the elliptic paraboloid z = x2 + y2
For the described solid S, write the triple integral f(x,y, z)dV as an iterated integral in (i) rectangular coordinates (x,y, z); (ii) cylindrical coordinates (r, 0, 2); (iii) spherical coordinates (p, φ,0). a. Inside the sphere 2 +3+224 and above the conezV b. Inside the sphere x2 + y2 + 22-12 and above the paraboloid z 2 2 + y2. c. Inside the sphere 2,2 + y2 + z2-2 and above the surface z-(z2 + y2)1/4 d. Inside the sphere...
(9 points) Suppose f(x, y, z) = - and D is the domain inside the sphere x2 + y2 + z2 x2 + y2 + z2 = 1 and outside the cone za Enter p as rho, as phi, and as theta. As an iterated integral, BRD (F sav = SITE dp do do JA JC JE with limits of integration
solve parts b,d and f 2. Compute the integral of f over S where (a) f(ayz)xy+z.S is the region in the first octant with xy+ (b) f(xy.z)xxyz, S is the region defined in 2(a) (c) f(x,y.z) x + y2-xz, s is the region bounded by the x'y plane, the plane z (d) f(x,y,z) 2, and the cylinderx2 y z, s is the region in the first octant bounded by r2 + y2 + 2 4 (e) f(xy,z-2, s is the...
5. Set up the iterated integral for evaluating SSS, f(r,0,z)dzrdrde over the given region D. D is the prism whose base is the triangle in the xy-plane bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane z = 2 – y. z 2 z = 2 - y y = x
Could you do number 4 please. Thanks 1-8 Evaluate the surface integral s. f(x, y, z) ds Vx2ty2 -vr+) 1. f(x, y, z) Z2; ơ is the portion of the cone z between the planes z 1 and z 2 1 2. f(x, y, z) xy; ơ is the portion of the plane x + y + z lying in the first octant. 3. f(x, y, z) x2y; a is the portion of the cylinder x2z2 1 between the planes...