8. Suppose the scores of students on an exam are normally distributed with mean u = 17.6 and standard deviation o = 4.9...
The combined SAT scores for students taking the SAT-I test are normally distributed with a mean of 982 and a standard deviation of 192. Explain specifically why we could use the Central Limit Theorem to find the probability that a randomly selected sample of 9 students who took the SAT-I has a mean score between 800-1150 even though the same size is less than 30
3. Exam scores on a certain test are distributed normally, with a mean of 72 and a standard devi- ation of 12. (a) Find the 95th percentile for the exam. (b) Suppose a student who took the exam is selected at random. Find the probability that the student scored between 71 and 73. Draw a graph that illustrates the probability calculated. (C) If you take a simple random sample of 36 students who have taken this exam, what is the...
The scores on a Statistics exam are normally distributed with a mean 75 with a standard deviation of 5. If nine students are randomly selected what is the probability that their mean score is greater than 68. (a) .0808 (b) -.4000 (c) .9192 (d) .0001 (e) .9999 29. Refer to question 28. Suppose that students with the lowest 10% of scores are placed on academic probation, what is the cutoff score to avoid being placed on academic probation? (a) >...
In a recent year, the total scores for a certain standardized test were normally distributed, with a mean of 500 and a standard deviation of 10.5. Answer parts (a)-(d) below. (a) Find the probability that a randomly selected medical student who took the test had a total score that was less than 490. (Round to four decimal places as needed.) The probability that a randomly selected medical student who took the test had a total score that was less than 490 is 0.1704 (b)...
USE R COMMANDS PLEASE
Exercise 1: Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 520 and a standard deviation of 80. Use R commands to answers the following questions (a) Tom wants to be admitted to this university and he knows that he must score better than at least 75% of the students who took the test. Tom takes the test and scores 595. Will...
7. Scores on a recent national Mathematics exam were normally distributed with a mean of 82 and a standard deviation of 7. A. What is the probability that a randomly selected exam score is less than 70 B. What is the probability that a randomly selected exam score is greater than 90? C. If the top 2.5% of test scores receive Merit awards, what is the lowest score necessary to receive a merit award?
if statistics test scores were normally distributed with a mean of 81 and a standard deviation of 4, a) what is the probability that a randomly selected student scored less than 70? b) what percentage of students had a B on the exam? c) the top 10% of the class had what grades?
In a recent year, the total scores for a certain standardized test were normally distributed, with a mean of 500 and a standard deviation of 10.4. Find the probability that a randomly selected medical student who took the test had a total score that was more than 530. The probability that a randomly selected medical student who took the test had a total score that was more than 530 is _______
In a recent year, the total scores for a certain standardized test were normally distributed, with a mean of 500 and a standard deviation of 10.6. Find the probability that a randomly selected medical student who took the test had a total score that was more than 529. The probability that a randomly selected medical student who took the test had a total score that was more than 529 is _______
Suppose the scores of students on an exam are Normally distributed with a mean of 303 and a standard deviation of 39. Then approximately 99.7% of the exam scores lie between the numbers and such that the mean is halfway between these two integers. (You are not to use Rcmdr for this question.) answer: answer: the weights of cans of Ocean brand tuna are supposed to have a net weight of 6 ounces. The manufacturer tells you that the net weight...