A flat (unbanked) curve on a highway has a radius of 250 m. A car successfully rounds the curve at a speed of 35 m/s but is on the verge of skidding out.
a. Draw free body diagram of the car.
b. If the coefficient of static friction between the car's tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve without slipping?
c. Suppose the coefficient of friction were increased by a factor of 2, what would be the maximum speed?
A flat (unbanked) curve on a highway has a radius of 240 m . A car successfully rounds the curve at a speed of 37 m/s but is on the verge of skidding out. Part A If the coefficient of static friction between the car’s tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve? Express your answer in meters per second to two significant figures. part B...
5. A car with mass of 1200 kg rounds a flat, unbanked curve with radius of 250 m. (a) Make a free body diagram of this car (1pts). driver can take the curve without sliding is yos. -18m/s. (6pts) (c) Calculate the coefficient of static friction (u, between tires and road. (6pts) at is the magnitude of the maximum friction force necessary to hold a car on the curve if the maximum speed at which the
A car travels around an unbanked 60 m radius curve without skidding, If the coefficient of friction between the tires and road is 0.4, what is the car's maximum speed? 55 kph 47 43 kph 76 kph 62 kph
Two curves on a highway have the same radii. However, one is unbanked and the other is banked at an angle of degrees. A car can safely travel along the unbanked curve at a maximum speed under conditions when the coefficient of static friction between the tures and the road is . The banked curve is frictionless, and the car can negotiate it at the same maximum speed . Find the coefficient of static friction between the tires and the...
A 1500-kg truck rounds an unbanked curve on the highway at a speed of 20.0 m/s. the radius of the curvature of the curve is 80-m. calculate the coefficient of friction - is this cofficient of static or kinetic friction?
A particular unbanked turn in the road is shaped like a circle with a radius of 30 meters. A car with a mass of 1500 kg can safely go around this turn at a maximum speed of 17 m/s. What is the coefficient of static friction between the car's tires and the road?
a car goes around an unbanked (flat) curve with a radius of 75 m. The cars tires are worn down so the coefficient of friction between the tired and asphalt is 0.60. What is the magnitude of the cars maximum possible velocity around the curve?
A highway curve has a radius of 0.14 km and is unbanked. A car weighing 12 kN goes around the curve at a speed of 24 m/s without slipping. What is the magnitude of the horizontal force of the road on the car?
picture. A 2,500 kg truck travels at 72.0 km/h and rounds an unbanked curve of radius 80.0 m. The coefficient of static friction between the tires and the road is 0.700, b. Draw a free-body diagram and show all forces on the truck. Determine the force of friction required to keep the truck in the same lane? What is the maximum speed (in km/h) at which the truck can negotiate the cur safely without going off track? c.
3. A car is negotiating a curve of radius 250 m. If the maximum speed the car can go without slipping is 47 m/s. Find coefficient of static friction between car's tires and the road. A) 0.6 B) 0.7 C) 0.8 D) 0.9 4. A car on a roller coaster has a speed of 12 m/s at an elevation of 20 m above the ground. It coasts down a slope, and then comes to rest after climbing a hill. Find...