Question

3 Sampling and aliasing The aim of this part is to demonstrate the effects of aliasing arising from improper sampling. A give

0 0
Add a comment Improve this question Transcribed image text
Answer #1

t=0:1/(5*10^3):2;
x=cos(2*pi*t)+cos(8*pi*t)+cos(12*pi*t);
xa=3*cos(2*pi*t);
hold on
plot(t,x);
plot(t,xa)

Add a comment
Know the answer?
Add Answer to:
3 Sampling and aliasing The aim of this part is to demonstrate the effects of aliasing...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 1: (Sampling and Aliasing Effeet) (25 Marks) The given analog signal x(t)--sin(16xt)+ sin(11xt)+ sin (5nt), where t is in milliseconds, is sampled at a rate of 12kHz. The resulting sampl...

    Question 1: (Sampling and Aliasing Effeet) (25 Marks) The given analog signal x(t)--sin(16xt)+ sin(11xt)+ sin (5nt), where t is in milliseconds, is sampled at a rate of 12kHz. The resulting samples are immediately reconstructed by an ideal reconstructor. a. Find and sketch the spectrum of x(t) versus Ω. b. Find and sketch the spectrum of the sampled signal versus o. c. Determine the analog signal x (t) at the output of the reconstructor. d. Prove the x(0) and x(t) having...

  • Q1) Given an analog signal X(t) = 3 cos (2π . 2000t) + 2 cos (2π...

    Q1) Given an analog signal X(t) = 3 cos (2π . 2000t) + 2 cos (2π . 5500t) sampled at a rate of 10,000 Hz, a. Sketch the spectrum of the sampled signal up to 20 kHz; b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal ; c. Determine the frequency/frequencies of aliasing noise . Q2)...

  • 10. Find the Fourier transform of a continuous-time signal x(t) = 10e Su(t). Plot the magnitude...

    10. Find the Fourier transform of a continuous-time signal x(t) = 10e Su(t). Plot the magnitude spectrum and the phase spectrum. If the signal is going to be sampled, what should be the minimum sampling frequency so that the aliasing error is less than 0.1 % of the maximum original magnitude at half the sampling frequency. 11. A signal x(t) = 5cos(2nt + 1/6) is sampled at every 0.2 seconds. Find the sequence obtained over the interval 0 st 3...

  • 1. An analog signal \(\mathrm{x}(\mathrm{t})\) contains frequencies from 0 up to \(10 \mathrm{kHz}\). You can assume...

    1. An analog signal \(\mathrm{x}(\mathrm{t})\) contains frequencies from 0 up to \(10 \mathrm{kHz}\). You can assume any arbitrary spectrum for this signal. (Note that this signals also has frequencies from 0 to \(-10 \mathrm{KHz} .)\) a) Draw the frequency spectrum of the signal after it has been sampled with a sampling frequency \(\mathrm{F}_{\mathrm{s}}=25 \mathrm{kHz}\) b) What range of sampling frequencies allows exact reconstruction of this signal from its samples? c) How is the original signal reconstructed from the sampled signal?...

  • Problems: 1. Consider the system shown below. Let the input signal to the Ideal Sampler to be: s(...

    just looking for #2, 3, and 4 Problems: 1. Consider the system shown below. Let the input signal to the Ideal Sampler to be: s(t) = 2 cos(2m50t) + 4cos(2m100t) a. (10 points) Determine S(f) and plot it b. (20 points) Let the sampling rate to be: fs 300 samples/sec. Plot the spectrum of the Ideal sample, that is plot S8(f) c. Let the sampling rate to be: fs 175 samples/sec. i. (30 points) Plot S8(f) ii. (10 points) Let...

  • A Digital Signal Processing system is taking at its input the following analogue signal s(t); s(t)...

    A Digital Signal Processing system is taking at its input the following analogue signal s(t); s(t) - 20+ 20 cos(24xt)cos(xt), Where time t is expressed in ms. Part 1 - Setting the sampling frequency: (11 Marks) As a start, the system comprises only a sampler and an ideal analogue reconstructor as follows: w(t) s(t) Sampler Analogue Reconstructor s,(t) Figure a) Find the frequency spectrum S(t) of s(t) and deduce its bandwidth. You may directly use the table provided at the...

  • 3. (50 points] Consider the signal (t= cos(27 (100)+]: 1) Let's take samples of x(t) at...

    3. (50 points] Consider the signal (t= cos(27 (100)+]: 1) Let's take samples of x(t) at a sampling rate fs = 180 Hz. Sketch the spectrum X (f) of the sampled signal x (t). Properly label x-axis and y-axis. 2) Now suppose we will use an ideal lowpass filter of gain 1/fs with a cutoff frequency 90 Hz for the sampled signal xs(t). What is the output of the filter x,(t)? 3) Now let's take samples of x(t) at sampling...

  • Plot the signal s(t) = cos(2πt), and then illustrate the resulting samples with the following sampling...

    Plot the signal s(t) = cos(2πt), and then illustrate the resulting samples with the following sampling intervals: [30 points] • Ts= 0.5 sec. • Ts= 0.75 sec • Ts =1 sec. (a) For each case, also sketch the reconstructed continuous time signal from the samples using linear interpolation (i.e. connecting samples by straight lines). (b) In which case the sampled signal has aliasing distortion? What is the minimal sampling frequency and the corresponding sampling interval needed to avoid aliasing? 3....

  • In all what follows, the sampling frequency is fixed to fs = 40KHz. Part 2 -...

    In all what follows, the sampling frequency is fixed to fs = 40KHz. Part 2 - Pre-Aliasing Filter As a preventive measure, a pre-aliasing filter with a cut-off frequency of fc = 20KHz was added to the system as shown in Figure 2 below. s(t) v(t) Pre-Aliasings,(t) Filter Sampler Analogue Reconstructor s,(t) Figure 2 g) Using your own words, briefly explain the main advantage and disadvantage of adding a pre-aliasing filter. h) Overall, is it a good move to add...

  • 36. Sampling a low-pass signal. A signal x(t) = sin( 1,000.71) is sampled at the rate...

    36. Sampling a low-pass signal. A signal x(t) = sin( 1,000.71) is sampled at the rate of F, and sent through a unity-gain ideal low-pass filter with the cutoff frequency at F,/2. Find and plot the Fourier transform of the reconstructed signal z(t) at filter's output if a. F=20 kHz b. Fs =800 Hz

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT