Exercise 31 A series ac circuit contains a 350 - resistor, a 20.0 - mH inductor,...
A circuit has an ac voltage source and a resistor and capacitor connected in series. There is no inductor. The ac voltage source has voltage amplitude 0.900 kV and angular frequency w = 20.0 rad/s. The voltage amplitude across the capacitor is 0.500 kV. The resistor has resistance R= 0.300 kΩ. Part A What is the voltage amplitude across the resistor? Part B What is the capacitance C of the capacitor? Part C Does the source voltage lag or lead the current? Part D What is the average...
What capacitor in series with a 100 Ohm resistor and a 20.0 mH inductor will give a resonance frequency of 800 Hz? A series RLC circuit consists of a 99.0 Ohm resistor, a 0.130 H inductor, and a 20.0 muF capacitor. It is attached to a 120 V/60 Hz power line. What is the peak current I? The tuning circuit in an FM radio receiver is a series RLC circuit with a 0.2000 muH inductor. The receiver is tuned to...
A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50 uF, and a source with AV = 240 V operating at 50.0 Hz. The max maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance. The inductive reactance depends on the value of the inductance and the frequency of the source. Q (b) Calculate the capacitive reactance. (c) Calculate the impedance. kn (d) Calculate the resistance in the circuit. kn. (e)...
ii) A 345 2 resistor, a 350 mH inductor, and 5 uF capacitor are connected in series with an (2) AC source. If the capacitive reactance is equal to the inductive reactance of the circuit, compute the frequency of the source
A circuit is constructed with an AC generator, a resistor, capacitor and inductor as shown. The generator voltage varies in time as ? =Va - Vb = ?msin?t, where ?m = 120 V and ? = 221 radians/second. The inductance L = 352 mH. The values for the capacitance C and the resistance R are unkown. What is known is that the current in the circuit leads the voltage across the generator by ? = 58 degrees and the average...
Exercise 31.20 In a series L-R-C circuit, the components have the following values: L =20.0 mH. C =140 nF and R= 350 2. The generator has an rms voltage of 120 V and a frequency of 1.25 kHz. Part A Determine the average power supplied by the generator ANSWER: P- w Part 8 Determine the average power dissipated in the resistor. ANSWER: PR- w
A series AC circuit contains a resistor, an inductor of 250 mh, a capacitor of 5.20 pF, and a source with AVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 160 mA. Calculate the resistance of the resister in the circuit. O A. 78.5 12 OB. 6122 O C. 1.4k12 OD. 1.5 k 22
A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20 ur, and a source with ΔⅤmax-240 V operating at 50.0 Hz. The maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance 69.11 (b) Calculate the capacitive reactance 757.88 (c) Calculate the impedance 141 (d) Calculate the resistance in the circuit. 6.887 The impedance is a function of the resistance and the impedances of the inductor and capacitor. kΩ (e) Calculate...
An AC filter circuit consists of a 1 kΩ resistor and a 100 mH inductor in series. Draw the Bode Plot of the decible power gain vs frequency for the inductor, and find the real power consumed in the circuit when the frequency is 7.5 krad/s and the generator amplitude is 250 V.
A resistor with R = 350 Ω and an inductor are connected in series across an ac source that has voltage amplitude 500 V . The rate at which electrical energy is dissipated in the resistor is 306 W (a) What is the impedance Z of the circuit? (b) What is the amplitude of the voltage across the inductor? (c) What is the power factor?