In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...
In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...
In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...
Thermodynamics. No interpolation needed.
Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle. The evaporator temperature is 8°C and the condenser pressure is 12 bar. Saturated vapor enters the compressor and superheated vapor enters the condenser at 60°C and exits the condenser as saturated liquid. For a refrigeration capacity of 8 tons or 2.816 x104 J/s determine the following: (1) The refrigerant mass flow rate in kg/s; (2) The compressor isentropic efficiency [Hint: Interpolation is required); (3)...
A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid. The system operates the evaporator at 0.4 MPa, the condenser at 1.6 MPa, and the separator at 0.8 MPa. The compressors use 25 kW of power. Given that the refrigerant is saturated liquid at the inlet of each expansion valve and saturated vapor at the inlet of each compressor, and the compressors are isentropic: (0) show the process on a T-s diagram; ) calculate...
In a heat pump operating according to the vapor compression refrigeration cycle, the refrigerant is R-134a. A water source of 11 °C is used to heat a house with a heating load of 17 kW. Refrigerant enters the compressor as saturated steam at 100 kPa pressure and rises at 1.6 MPa, 60 ° C. The temperature of the refrigerant at the outlet of the condenser is 30°C. a) The amount of heat at the beginning of the water, b) Compressor...
Refrigerant 134a is the working fluid in an ideal vapor-compression
refrigeration cycle. Saturated vapor enters the compressor at h =
400 J/kg and saturated liquid leaves the condenser at h= 242 J/kg.
If the mass flow rate of the refrigerant is 0.08 kg/s, and
superheated vapor exits the compressor at h = 420 J/kg, pression
work will be equal to 1.6 kW
inch-h) 6.08(420 - 6oo) = 1.6
An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at -10°C, and saturated liquid leaves the condenser at 28°C. The mass flow rate of refrigerant is 5 kg/min. Determine (a) The compressor power, in kW (b) The refrigerating capacity, in tons. (c) The coefficient of performance. Sketch the system on a T-s diagram with full label. A vapor-compression heat pump with a heating capacity of 500 kJ/min is...
A freezer is designed, based on vapor-compression refrigeration cycle. The designed conditions are: R-134a as refrigerant, with a cooling capacity of 500 kW; compressor of 70% efficiency, with a superheat of 10°C before compressor inlet; operation temperature of -10°C inside the refrigerator, with the environment temperature of 25°C outside the refrigerator; Determine the pressure range of refrigeration cycle if a 10°C difference is required to ensure effective heat transfer of evaporator and condenser; Plot the refrigeration cycle on P-h diagram;...
A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid. the system operates the evaporator at 0.4Mpa, the condenser at 1.6Mpa and the separator at 0.8 Mpa. The compressors use 25kW of power. Given that the refrigerant is saturated liquid at the inlet of each compressor, and the compressors are isentropic: i) show the process on a T-s diagram, ii) calculate the rate of cooling provided by the evaporator, the COP of the heat...
QUESTION 1 A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by absorbing heat from geothermal water that enters the evaporator at 50°C at a rate of 0.065 kg/s and leaves at 40°C. The refrigerant enters the evaporator at 20°C with a quality of 23 percent and leaves at the inlet pressure as saturated vapor. The refrigerant loses 300 W of heat to the surroundings as it flows through the compressor and...