Answer:-
Given That:-
Let
denote a random sample of size n from a population whose density
function is given by
CDF of X is
Therefore CDF of X is
pdf of X
Therefore,
Bias of the estimator
is
Let X1, X2, ..., Xn denote a random sample of size n from a population whose...
Let X1, X2, ...,Xn denote a random sample of size n from a Pareto distribution. X(1) = min(X1, X2, ..., Xn) has the cumulative distribution function given by: αη 1 - ( r> B X F(x) = . x <B 0 Show that X(1) is a consistent estimator of ß.
Let X1, X2, ..., Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) max(X1,X2, ...,Xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for e.
Let X1, X2, ...,Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) = max(X1, X2, ...,xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for 0.
QUESTION 3 Let Y1, Y2, ..., Yn denote a random sample of size n from a population whose density is given by (Parcto distribution). Consider the estimator β-Yu)-min(n, Y, where β is unknown (a) Derive the bias of the estimator β. (b) Derive the mean square error of B. , Yn).
6. Let X1, X2,.. , Xn denote a random sample of size n> 1 from a distribution with pdf f(x; 6) = 6e-8, 0<x< 20, zero elsewhere, and 0 > 0. Le Y = x. (a) Show that Y is a sufficient and complete statistics for . (b) Prove that (n-1)/Y is an unbiased estimator of 0.
Let X1, X2, ... , Xn be a random sample of size n from the exponential distribution whose pdf is f(x; θ) = (1/θ)e^(−x/θ) , 0 < x < ∞, 0 <θ< ∞. Find the MVUE for θ. Let X1, X2, ... , Xn be a random sample of size n from the exponential distribution whose pdf is f(x; θ) = θe^(−θx) , 0 < x < ∞, 0 <θ< ∞. Find the MVUE for θ.
Let X1,X2,...,Xn denote a random sample from the Rayleigh distribution given by f(x) = (2x θ)e−x2 θ x > 0; 0, elsewhere with unknown parameter θ > 0. (A) Find the maximum likelihood estimator ˆ θ of θ. (B) If we observer the values x1 = 0.5, x2 = 1.3, and x3 = 1.7, find the maximum likelihood estimate of θ.
Let X1, X2...,Xn be a random sample from a population with probability density function f(x) = theta(1-x)^(theta-1), 0<x<1 where theta is a positive unknown parameter. Find the method of moments estimator of theta.
Please give detailed steps. Thank you.
5. Let {X1, X2,..., Xn) denote a random sample of size N from a population d escribed by a random variable X. Let's denote the population mean of X by E(X) - u and its variance by Consider the following four estimators of the population mean μ : 3 (this is an example of an average using only part of the sample the last 3 observations) (this is an example of a weighted average)...
X1, X2, X3, ...Xn are members of a random sample size n drawn
from a
for the population population with unknown mean. Consider the estimator Ê = = n-1 mean. Ê is a consistent estimator of the population mean.