Question

6. Let X1, X2,.. , Xn denote a random sample of size n> 1 from a distribution with pdf f(x; 6) = 6e-8, 0<x< 20, zero elsewher

0 0
Add a comment Improve this question Transcribed image text
Answer #1

LIMUULUVBW Abis Sa Ginen X, 1X2,... Yn is a random sample from the distributions with ņ weta polt, pdf, fex, o) - geox ocxLooCCCCodedee@@ODDDD a, Y. Gamma (milo) (6) n- palf of Y, fych) = ixto - forgy). One oyun - 470 El 1-1] . n-1 E(+) . 6-0 ff fryo

Add a comment
Know the answer?
Add Answer to:
6. Let X1, X2,.. , Xn denote a random sample of size n> 1 from a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Let X1, X2, ..., Xn denote a random sample of size n from a population whose...

    Let X1, X2, ..., Xn denote a random sample of size n from a population whose density fucntion is given by 383x-4 f S x f(x) = 0 elsewhere where ß > 0 is unknown. Consider the estimator ß = min(X1, X2, ...,Xn). Derive the bias of the estimator ß.

  • 8. Let X1,...,Xn denote a random sample of size n from an exponential distribution with density function given by, 1 -x...

    8. Let X1,...,Xn denote a random sample of size n from an exponential distribution with density function given by, 1 -x/0 -e fx(x) MSE(1). Hint: What is the (a) Show that distribution of Y/1)? nY1 is an unbiased estimator for 0 and find (b) Show that 02 = Yn is an unbiased estimator for 0 and find MSE(O2). (c) Find the efficiency of 01 relative to 02. Which estimate is "better" (i.e. more efficient)? 8. Let X1,...,Xn denote a random...

  • Let X1, X2, ...,Xn denote a random sample of size n from a Pareto distribution. X(1)...

    Let X1, X2, ...,Xn denote a random sample of size n from a Pareto distribution. X(1) = min(X1, X2, ..., Xn) has the cumulative distribution function given by: αη 1 - ( r> B X F(x) = . x <B 0 Show that X(1) is a consistent estimator of ß.

  • Let X1, X2, ..., Xn be a random sample from a Gamma( a , ) distribution....

    Let X1, X2, ..., Xn be a random sample from a Gamma( a , ) distribution. That is, f(x;a,0) = loga xa-le-210, 0 < x <co, a>0,0 > 0. Suppose a is known. a. Obtain a method of moments estimator of 0, 0. b. Obtain the maximum likelihood estimator of 0, 0. c. Is O an unbiased estimator for 0 ? Justify your answer. "Hint": E(X) = p. d. Find Var(ë). "Hint": Var(X) = o/n. e. Find MSE(Ô).

  • Let X1, X2, ..., Xn be a random sample of size n from a population that...

    Let X1, X2, ..., Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) max(X1,X2, ...,Xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for e.

  • Let X1, X2, ...... Xn  be a random sample of size n from EXP() distribution , ,...

    Let X1, X2, ...... Xn  be a random sample of size n from EXP() distribution , , zero , elsewhere. Given, mean of distribution and variances and mgf a) Show that the mle for is . Is a consistent estimator for ? b)Show that Fisher information . Is mle of an efficiency estimator for ? why or why not? Justify your answer. c) what is the mle estimator of ? Is the mle of a consistent estimator for ? d) Is...

  • Let X1, ..., Xn be a random sample from a population with pdf f(x 1/8,0 <...

    Let X1, ..., Xn be a random sample from a population with pdf f(x 1/8,0 < x < θ, zero elsewhere. Let Yi < < Y, be the order statistics. Show that Y/Yn and Yn are independent random variables

  • Let X1, X2, ...,Xn be a random sample of size n from a population that can...

    Let X1, X2, ...,Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) = max(X1, X2, ...,xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for 0.

  • Let X1, X2, ..., Xn represent a random sample from each of the distributions having the...

    Let X1, X2, ..., Xn represent a random sample from each of the distributions having the following pdf. Please find the maximum likelihood estimator for each case: (c) f(x; θ)--e-x/e,0 < x < 00, 0 < θ < oo, zero elsewhere (d) f(x; θ) e- , θ x < 00,-00 < θ < 00, zero elsewhere In each case, find the mie of a (x-6)

  • 5. Let X1, X2,. , Xn be a random sample from a distribution with pdf of...

    5. Let X1, X2,. , Xn be a random sample from a distribution with pdf of f(x) (0+1)x,0< x<1 a. What is the moment estimator for 0 using the method of moments technique? b. What is the MLE for 0?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT