ANSWER:
Let X1, X2, ...,Xn denote a random sample of size n from a Pareto distribution. X(1)...
Let X1, X2, ..., Xn denote a random sample of size n from a population whose density fucntion is given by 383x-4 f S x f(x) = 0 elsewhere where ß > 0 is unknown. Consider the estimator ß = min(X1, X2, ...,Xn). Derive the bias of the estimator ß.
8. Let X1,...,Xn denote a random sample of size n from an exponential distribution with density function given by, 1 -x/0 -e fx(x) MSE(1). Hint: What is the (a) Show that distribution of Y/1)? nY1 is an unbiased estimator for 0 and find (b) Show that 02 = Yn is an unbiased estimator for 0 and find MSE(O2). (c) Find the efficiency of 01 relative to 02. Which estimate is "better" (i.e. more efficient)?
8. Let X1,...,Xn denote a random...
6. Let X1, X2,.. , Xn denote a random sample of size n> 1 from a distribution with pdf f(x; 6) = 6e-8, 0<x< 20, zero elsewhere, and 0 > 0. Le Y = x. (a) Show that Y is a sufficient and complete statistics for . (b) Prove that (n-1)/Y is an unbiased estimator of 0.
Let X1, X2, ......
Xn be a random sample of size n from
EXP()
distribution ,
, zero , elsewhere.
Given, mean of distribution
and variances
and mgf
a) Show that the mle
for
is
. Is
a consistent estimator for
?
b)Show that Fisher information
. Is mle of
an efficiency estimator for
? why or why not? Justify your answer.
c) what is the mle estimator of
? Is the mle of
a consistent estimator for
?
d) Is...
Let X1, X2, ..., Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) max(X1,X2, ...,Xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for e.
1. Let X1, X2,... .Xn be a random sample of size n from a Bernoulli distribution for which p is the probability of success. We know the maximum likelihood estimator for p is p = 1 Σ_i Xi. ·Show that p is an unbiased estimator of p.
Let X1,X2,...,Xn denote a random sample from the Rayleigh distribution given by f(x) = (2x θ)e−x2 θ x > 0; 0, elsewhere with unknown parameter θ > 0. (A) Find the maximum likelihood estimator ˆ θ of θ. (B) If we observer the values x1 = 0.5, x2 = 1.3, and x3 = 1.7, find the maximum likelihood estimate of θ.
Let X1, X2, ...,Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) = max(X1, X2, ...,xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for 0.
Let X1, X2, ... , Xn be a random sample of size n from the exponential distribution whose pdf is f(x; θ) = (1/θ)e^(−x/θ) , 0 < x < ∞, 0 <θ< ∞. Find the MVUE for θ. Let X1, X2, ... , Xn be a random sample of size n from the exponential distribution whose pdf is f(x; θ) = θe^(−θx) , 0 < x < ∞, 0 <θ< ∞. Find the MVUE for θ.
Let X1, X2, ..., Xn be a random sample of size n from the distribution with probability density function f(x1) = 2 Æ e-dz?, x > 0, 1 > 0. a. Obtain the maximum likelihood estimator of 1 . Enter a formula below. Use * for multiplication, / for divison, ^ for power. Use m1 for the sample mean X, m2 for the second moment and pi for the constant n. That is, m1 = * = *Šxi, m2 =...