Question

Let X1, X2, ...,Xn denote a random sample of size n from a Pareto distribution. X(1) = min(X1, X2, ..., Xn) has the cumulativ

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ANSWER:

Given let X, 1X2,---, Xn denote a random sample of size n from a pareto distribution You min (X1, X2, --Xo) has the cumulativ2 So px -> ] as no . So X (1) is consistant for B

Add a comment
Know the answer?
Add Answer to:
Let X1, X2, ...,Xn denote a random sample of size n from a Pareto distribution. X(1)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Let X1, X2, ..., Xn denote a random sample of size n from a population whose...

    Let X1, X2, ..., Xn denote a random sample of size n from a population whose density fucntion is given by 383x-4 f S x f(x) = 0 elsewhere where ß > 0 is unknown. Consider the estimator ß = min(X1, X2, ...,Xn). Derive the bias of the estimator ß.

  • 8. Let X1,...,Xn denote a random sample of size n from an exponential distribution with density function given by, 1 -x...

    8. Let X1,...,Xn denote a random sample of size n from an exponential distribution with density function given by, 1 -x/0 -e fx(x) MSE(1). Hint: What is the (a) Show that distribution of Y/1)? nY1 is an unbiased estimator for 0 and find (b) Show that 02 = Yn is an unbiased estimator for 0 and find MSE(O2). (c) Find the efficiency of 01 relative to 02. Which estimate is "better" (i.e. more efficient)? 8. Let X1,...,Xn denote a random...

  • 6. Let X1, X2,.. , Xn denote a random sample of size n> 1 from a...

    6. Let X1, X2,.. , Xn denote a random sample of size n> 1 from a distribution with pdf f(x; 6) = 6e-8, 0<x< 20, zero elsewhere, and 0 > 0. Le Y = x. (a) Show that Y is a sufficient and complete statistics for . (b) Prove that (n-1)/Y is an unbiased estimator of 0.

  • Let X1, X2, ...... Xn  be a random sample of size n from EXP() distribution , ,...

    Let X1, X2, ...... Xn  be a random sample of size n from EXP() distribution , , zero , elsewhere. Given, mean of distribution and variances and mgf a) Show that the mle for is . Is a consistent estimator for ? b)Show that Fisher information . Is mle of an efficiency estimator for ? why or why not? Justify your answer. c) what is the mle estimator of ? Is the mle of a consistent estimator for ? d) Is...

  • Let X1, X2, ..., Xn be a random sample of size n from a population that...

    Let X1, X2, ..., Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) max(X1,X2, ...,Xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for e.

  • 1. Let X1, X2,... .Xn be a random sample of size n from a Bernoulli distribution...

    1. Let X1, X2,... .Xn be a random sample of size n from a Bernoulli distribution for which p is the probability of success. We know the maximum likelihood estimator for p is p = 1 Σ_i Xi. ·Show that p is an unbiased estimator of p.

  • Let X1,X2,...,Xn denote a random sample from the Rayleigh distribution given by f(x) =  ...

    Let X1,X2,...,Xn denote a random sample from the Rayleigh distribution given by f(x) =   (2x θ)e−x2 θ x > 0; 0, elsewhere with unknown parameter θ > 0. (A) Find the maximum likelihood estimator ˆ θ of θ. (B) If we observer the values x1 = 0.5, x2 = 1.3, and x3 = 1.7, find the maximum likelihood estimate of θ.

  • Let X1, X2, ...,Xn be a random sample of size n from a population that can...

    Let X1, X2, ...,Xn be a random sample of size n from a population that can be modeled by the following probability model: axa-1 fx(x) = 0 < x < 0, a > 0 θα a) Find the probability density function of X(n) = max(X1, X2, ...,xn). b) Is X(n) an unbiased estimator for e? If not, suggest a function of X(n) that is an unbiased estimator for 0.

  • Let X1, X2, ... , Xn be a random sample of size n from the exponential...

    Let X1, X2, ... , Xn be a random sample of size n from the exponential distribution whose pdf is f(x; θ) = (1/θ)e^(−x/θ) , 0 < x < ∞, 0 <θ< ∞. Find the MVUE for θ. Let X1, X2, ... , Xn be a random sample of size n from the exponential distribution whose pdf is f(x; θ) = θe^(−θx) , 0 < x < ∞, 0 <θ< ∞. Find the MVUE for θ.

  • Let X1, X2, ..., Xn be a random sample of size n from the distribution with...

    Let X1, X2, ..., Xn be a random sample of size n from the distribution with probability density function f(x1) = 2 Æ e-dz?, x > 0, 1 > 0. a. Obtain the maximum likelihood estimator of 1 . Enter a formula below. Use * for multiplication, / for divison, ^ for power. Use m1 for the sample mean X, m2 for the second moment and pi for the constant n. That is, m1 = * = *Šxi, m2 =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT