Consider a particle in a 1-dimensional ininite square well potential {0, V(z)=Í oo, (-a < z...
3.9. A particle of mass m is confined in the potential well 0 0<x < L oo elsewhere (a) At time t 0, the wave function for the particle is the one given in Problem 3.3. Calculate the probability that a measurement of the energy yields the value En, one of the allowed energies for a particle in the box. What are the numerical values for the probabilities of obtaining the ground-state energy E1 and the first-excited-state energy E2? Note:...
Consider a particle in a 1-d well with potential V(x) =-U for-d < x < d, and V(z) 0 elsewhere. We will use the variational wave function v(z) = A(b + r), t(x)-A(b-x), -b < r < 0, 0 < x < b, to show that a bound state exists for any U0. a) Normalize the wave function. Find the expectation values of the kinetic and potential energies b) Show that for sufficiently large b, with b> d, the expectation...
1. Consider a particle of mass m in an infinite square well with potential energy 0 for 0 Sz S a oo otherwise V (x) For simplicity, we may take the 'universe' here to be the region of 0 S z S a, which is where the wave function is nontrivial. Consequently, we may express stationary state n as where En is the associated mechanical energy. It can be shown that () a/2 and (p:)0 for stationary state n. (a)...
Exercise 5 Consider a particle in an infinite square well of length a. The particle is initially in the ground-state. The width of the potential well is suddenly changed by moving the right wall of the well from a to 2a. What is the probability of observing the particle in the ground-state of the new expanded well ?
Part A A three-dimensional potential well has potential Uo = 0 in the region 0 < x <L, 0<y<L, and 0 <z<2L and infinite potential otherwise. The ground state energy of a particle in the well is E. What is the energy of the first excited state, and what is the degeneracy of that state? 3Eo, triple degeneracy 2Eo, single degeneracy 2Eo, double degeneracy (7/3)Eo, double degeneracy (4/3)Eo, single degeneracy Submit Request Answer
At time t = 0, a mass-m particle in a one-dimensional potential well is in a state given by the normalised wave function (x, 0) =3/2eAl2| | -ao x << 0, realU>0. Find the potential energy V = the energy eigenvalue E. Fix zero energy according to the convention V(x) » 0 for ao. Is there a delta function singularity at x0? V (x) for which this is an energy eigenstate and determine [6]
At time t = 0, a...
4) A particle in an infinite square well 0 for 0
5) A particle of mass m is in the ground state of the infinite square well 0 < x < a At t-0 the right hand wall suddenly moves to x = 2a, doubling the size of the well. Assume that this expansion happens on a time scale so fast that the initial wave function (at t0+) is the same as just before the expansion (at t-0-) (This is called the "sudden" approximation.) a) What is the probability that a...
An infinite square well and a finite square well in 1D with
equal width. The potential energies of these wells are
Infinite square well: V(x)=0, from 0 < x < a, also V(x) =
, elsewhere
Finite square well: V(x)= 0, from 0 < x < a, also V(x) =
,
elsewhere
The ground state of both systems have identical particles.
Without solving the energies of ground states, determine which
particle has the higher energy and explain why?
Questions 1 - 5 deal with a particle in a one-dimensional infinite square well of width a where 0, 0 SX Sa V(x) = 100, Otherwise. The stationary states are Pn(x) = sin(**) with energies En = "forn = 1,2,3.. Question 1 (14 pts) Which of the following is correct? A. The Hilbert space for this system is one dimensional. B. The energy eigenstates of the system form a ID Hilbert space. C. Both A and B are correct. D....